Experimental feature gate for `super let`
This adds an experimental feature gate, `#![feature(super_let)]`, for the `super let` experiment.
Tracking issue: https://github.com/rust-lang/rust/issues/139076
Liaison: ``@nikomatsakis``
## Description
There's a rough (inaccurate) description here: https://blog.m-ou.se/super-let/
In short, `super let` allows you to define something that lives long enough to be borrowed by the tail expression of the block. For example:
```rust
let a = {
super let b = temp();
&b
};
```
Here, `b` is extended to live as long as `a`, similar to how in `let a = &temp();`, the temporary will be extended to live as long as `a`.
## Properties
During the temporary lifetimes work we did last year, we explored the properties of "super let" and concluded that the fundamental property should be that these two are always equivalent in any context:
1. `& $expr`
2. `{ super let a = & $expr; a }`
And, additionally, that these are equivalent in any context when `$expr` is a temporary (aka rvalue):
1. `& $expr`
2. `{ super let a = $expr; & a }`
This makes it possible to give a name to a temporary without affecting how temporary lifetimes work, such that a macro can transparently use a block in its expansion, without that having any effect on the outside.
## Implementing pin!() correctly
With `super let`, we can properly implement the `pin!()` macro without hacks: ✨
```rust
pub macro pin($value:expr $(,)?) {
{
super let mut pinned = $value;
unsafe { $crate::pin::Pin::new_unchecked(&mut pinned) }
}
}
```
This is important, as there is currently no way to express it without hacks in Rust 2021 and before (see [hacky definition](2a06022951/library/core/src/pin.rs (L1947))), and no way to express it at all in Rust 2024 (see [issue](https://github.com/rust-lang/rust/issues/138718)).
## Fixing format_args!()
This will also allow us to express `format_args!()` in a way where one can assign the result to a variable, fixing a [long standing issue](https://github.com/rust-lang/rust/issues/92698):
```rust
let f = format_args!("Hello {name}!"); // error today, but accepted in the future! (after separate FCP)
```
## Experiment
The precise definition of `super let`, what happens for `super let x;` (without initializer), and whether to accept `super let _ = _ else { .. }` are still open questions, to be answered by the experiment.
Furthermore, once we have a more complete understanding of the feature, we might be able to come up with a better syntax. (Which could be just a different keywords, or an entirely different way of naming temporaries that doesn't involve a block and a (super) let statement.)
remove `feature(inline_const_pat)`
Summarizing https://rust-lang.zulipchat.com/#narrow/channel/144729-t-types/topic/remove.20feature.28inline_const_pat.29.20and.20shared.20borrowck.
With https://github.com/rust-lang/types-team/issues/129 we will start to borrowck items together with their typeck parent. This is necessary to correctly support opaque types, blocking the new solver and TAIT/ATPIT stabilization with the old one. This means that we cannot really support `inline_const_pat` as they are implemented right now:
- we want to typeck inline consts together with their parent body to allow inference to flow both ways and to allow the const to refer to local regions of its parent.This means we also need to borrowck the inline const together with its parent as that's necessary to properly support opaque types
- we want the inline const pattern to participate in exhaustiveness checking
- to participate in exhaustiveness checking we need to evaluate it, which requires borrowck, which now relies on borrowck of the typeck root, which ends up checking exhaustiveness again. **This is a query cycle**.
There are 4 possible ways to handle this:
- stop typechecking inline const patterns together with their parent
- causes inline const patterns to be different than inline const exprs
- prevents bidirectional inference, we need to either fail to compile `if let const { 1 } = 1u32` or `if let const { 1u32 } = 1`
- region inference for inline consts will be harder, it feels non-trivial to support inline consts referencing local regions from the parent fn
- inline consts no longer participate in exhaustiveness checking. Treat them like `pat if pat == const { .. }` instead. We then only evaluate them after borrowck
- difference between `const { 1 }` and `const FOO: usize = 1; match x { FOO => () }`. This is confusing
- do they carry their weight if they are now just equivalent to using an if-guard
- delay exhaustiveness checking until after borrowck
- should be possible in theory, but is a quite involved change and may have some unexpected challenges
- remove this feature for now
I believe we should either delay exhaustiveness checking or remove the feature entirely. As moving exhaustiveness checking to after borrow checking is quite complex I think the right course of action is to fully remove the feature for now and to add it again once/if we've got that implementation figured out.
`const { .. }`-expressions remain stable. These seem to have been the main motivation for https://github.com/rust-lang/rfcs/issues/2920.
r? types
cc `@rust-lang/types` `@rust-lang/lang` #76001
Revert "Rollup merge of #136127 - WaffleLapkin:dyn_ptr_unwrap_cast, r=compiler-errors"
...not permanently tho. Just until we can land something like #138542, which will fix the underlying perf issues (https://github.com/rust-lang/rust/pull/136127#issuecomment-2743891744). I just don't want this to land on beta and have people rely on this behavior if it'll need some reworking for it to be implemented performantly.
r? `@WaffleLapkin` or reassign -- sorry for reverting ur pr! i'm working on getting it re-landed soon :>
hygiene: Rewrite `apply_mark_internal` to be more understandable
The previous implementation allocated new `SyntaxContext`s in the inverted order, and it was generally very hard to understand why its result matches what the `opaque` and `opaque_and_semitransparent` field docs promise.
```rust
/// This context, but with all transparent and semi-transparent expansions filtered away.
opaque: SyntaxContext,
/// This context, but with all transparent expansions filtered away.
opaque_and_semitransparent: SyntaxContext,
```
It also couldn't be easily reused for the case where the context id is pre-reserved like in #129827.
The new implementation tries to follow the docs in a more straightforward way.
I did the transformation in small steps, so it indeed matches the old implementation, not just the docs.
So I suggest reading only the new version.
Simplify expansion for format_args!().
Instead of calling `Placeholder::new()`, we can just use a struct expression directly.
Before:
```rust
Placeholder::new(…, …, …, …)
```
After:
```rust
Placeholder {
position: …,
flags: …,
width: …,
precision: …,
}
```
(I originally avoided the struct expression, because `Placeholder` had a lot of fields. But now that https://github.com/rust-lang/rust/pull/136974 is merged, it only has four fields left.)
This will make the `fmt` argument to `fmt::Arguments::new_v1_formatted()` a candidate for const promotion, which is important if we ever hope to tackle https://github.com/rust-lang/rust/issues/92698 (It doesn't change anything yet though, because the `args` argument to `fmt::Arguments::new_v1_formatted()` is not const-promotable.)
[AIX] Ignore linting on repr(C) structs with repr(packed) or repr(align(n))
This PR updates the lint added in 9b40bd7 to ignore repr(C) structs that also have repr(packed) or repr(align(n)).
As these representations can be modifiers on repr(C), it is assumed that users that add these should know what they are doing, and thus the the lint should not warn on the respective structs. For example, for the time being, using repr(packed) and manually padding a repr(C) struct can be done to correctly align struct members on AIX.
Set `target_vendor = "openwrt"` on `mips64-openwrt-linux-musl`
OpenWRT is a Linux distribution for embedded network devices. The target name contains `openwrt`, so we should set `cfg(target_vendor = "openwrt")`.
This is similar to what other Linux distributions do (the only one in-tree is `x86_64-unikraft-linux-musl`, but that sets `target_vendor = "unikraft"`).
Motivation: To make correctly [parsing target names](https://github.com/rust-lang/cc-rs/pull/1413) simpler.
Fixes https://github.com/rust-lang/rust/issues/131165.
CC target maintainer `@Itus-Shield`
compiletest: Support matching diagnostics on lines below
Using `//~vvv ERROR`.
This is not needed often, but it's easy to support, and it allows to eliminate a class of `error-pattern`s that cannot be eliminated in any other way.
See the diff for the examples of such patterns coming from parser.
Some of them can be matched by `//~ ERROR` or `//~^ ERROR` as well (when the final newline is allowed), but it changes the shape of reported spans, so I chose to keep the spans by using `//~v ERROR`.
Start using `with_native_path` in `std::sys::fs`
Ideally, each platform should use their own native path type internally. This will, for example, allow passing a `CStr` directly to `std::fs::File::open` and therefore avoid the need for allocating a new null-terminated C string.
However, doing that for every function and platform all at once makes for a large PR that is way too prone to breaking. So this PR does some minimal refactoring which should help progress towards that goal. The changes are Unix-only and even then I avoided functions that require more changes so that this PR is just moving things around.
r? joboet
Fix `uclibc` LLVM target triples
`uclibc` is not an environment understood by LLVM, it is only a concept in Clang that can be selected with `-muclibc` (it affects which dynamic linker is passed to the static linker's `-dynamic-linker` flag).
In fact, using `uclibcgnueabi`/`uclibc` is actively harmful, as it prevents LLVM from seeing that the target is gnu-like; we should use `gnueabi`/`gnu` directly instead.
Motivation: To make it easier to verify that [`cc-rs`' conversion from `rustc` to Clang/LLVM triples](https://github.com/rust-lang/cc-rs/issues/1431) is correct.
**There are no target maintainers for these targets.** So I'll CC ``@lancethepants`` and ``@skrap`` who maintain the related `armv7-unknown-linux-uclibceabi` and `armv7-unknown-linux-uclibceabihf` (both of which already pass `-gnu` instead of `-uclibc`) in case they have any insights.
r? jieyouxu
stabilize const_cell
``@rust-lang/libs-api`` ``@rust-lang/wg-const-eval`` I see no reason to wait any longer, so I propose we stabilize the use of `Cell` in `const fn` -- specifically the APIs listed here:
```rust
// core::cell
impl<T> Cell<T> {
pub const fn replace(&self, val: T) -> T;
}
impl<T: Copy> Cell<T> {
pub const fn get(&self) -> T;
}
impl<T: ?Sized> Cell<T> {
pub const fn get_mut(&mut self) -> &mut T;
pub const fn from_mut(t: &mut T) -> &Cell<T>;
}
impl<T> Cell<[T]> {
pub const fn as_slice_of_cells(&self) -> &[Cell<T>];
}
```
Unfortunately, `set` cannot be made `const fn` yet as it drops the old contents.
Fixes https://github.com/rust-lang/rust/issues/131283
Avoid wrapping constant allocations in packed structs when not necessary
This way LLVM will set the string merging flag if the alloc is a nul terminated string, reducing binary sizes.
try-job: armhf-gnu
rustdoc: Rearrange `Item`/`ItemInner`.
The `Item` struct is 48 bytes and contains a `Box<ItemInner>`;
`ItemInner` is 104 bytes. This is an odd arrangement. Normally you'd
have one of the following.
- A single large struct, which avoids the allocation for the `Box`, but
can result in lots of wasted space in unused parts of a container like
`Vec<Item>`, `HashSet<Item>`, etc.
- Or, something like `struct Item(Box<ItemInner>)`, which requires the
`Box` allocation but gives a very small Item size, which is good for
containers like `Vec<Item>`.
`Item`/`ItemInner` currently gets the worst of both worlds: it always
requires a `Box`, but `Item` is also pretty big and so wastes space in
containers. It would make sense to push it in one direction or the
other. #138916 showed that the first option is a regression for rustdoc,
so this commit does the second option, which improves speed and reduces
memory usage.
r? `@GuillaumeGomez`
Instantiate binder before registering nested obligations for auto/built-in traits
Instead of turning a `Binder<Vec<Ty>>` into a bunch of higher-ranked predicates, instantiate the binder eagerly *once* and turn them into a bunch of non-higher-ranked predicates.
Right now this feels like a noop, but this `enter_forall_and_leak_universe` call would be the singular place where we could instantiate bound lifetime assumptions for coroutine witnesses... if we had them. Thus consolidating the binder instantiation here is useful if we want to fix the coroutine-auto-trait problem.
r? lcnr
Remove `prev_index_to_index` field from `CurrentDepGraph`
The dep graph currently has 2 ways to map a previous index into a current index. The `prev_index_to_index` map stores the current index equivalent of a previous index. For indices which are marked green, we also store the same information in the `DepNodeColorMap`. We actually only need to known the mapping for green nodes however, so this PR removes `prev_index_to_index` and instead makes use of the `DepNodeColorMap`.
To avoid racing when promoting a node from the previous session, the encoder lock is now used to ensure only one thread encodes the promoted node. This was previously done by the lock in `prev_index_to_index`.
This also changes `nodes_newly_allocated_in_current_session` used to detect duplicate dep nodes to contain both new and previous nodes, which is simpler and can better catch duplicates.
The dep node index encoding used in `DepNodeColorMap` is tweak to avoid subtraction / addition to optimize accessing the current equivalent of a previous index.
r? `@oli-obk`
hygiene: Ensure uniqueness of `SyntaxContextData`s
`SyntaxContextData`s are basically interned with `SyntaxContext`s working as indices, so they are supposed to be unique.
However, currently duplicate `SyntaxContextData`s can be created during decoding from metadata or incremental cache.
This PR fixes that.
cc https://github.com/rust-lang/rust/pull/129827#discussion_r1759074553
add FCW to warn about wasm ABI transition
See https://github.com/rust-lang/rust/issues/122532 for context: the "C" ABI on wasm32-unk-unk will change. The goal of this lint is to warn about any function definition and calls whose behavior will be affected by the change. My understanding is the following:
- scalar arguments are fine
- including 128 bit types, they get passed as two `i64` arguments in both ABIs
- `repr(C)` structs (recursively) wrapping a single scalar argument are fine (unless they have extra padding due to over-alignment attributes)
- all return values are fine
`@bjorn3` `@alexcrichton` `@Manishearth` is that correct?
I am making this a "show up in future compat reports" lint to maximize the chances people become aware of this. OTOH this likely means warnings for most users of Diplomat so maybe we shouldn't do this?
IIUC, wasm-bindgen should be unaffected by this lint as they only pass scalar types as arguments.
Tracking issue: https://github.com/rust-lang/rust/issues/138762
Transition plan blog post: https://github.com/rust-lang/blog.rust-lang.org/pull/1531
try-job: dist-various-2
Rollup of 8 pull requests
Successful merges:
- #135745 (Recognise new IPv6 non-global range from IETF RFC 9602)
- #137247 (cg_llvm: Reduce the visibility of types, modules and using declarations in `rustc_codegen_llvm`.)
- #138317 (privacy: Visit types and traits in impls in type privacy lints)
- #138581 (Abort in deadlock handler if we fail to get a query map)
- #138776 (coverage: Separate span-extraction from unexpansion)
- #138886 (Fix autofix for `self` and `self as …` in `unused_imports` lint)
- #138924 (Reduce `kw::Empty` usage, part 3)
- #138929 (Visitors track whether an assoc item is in a trait impl or an inherent impl)
r? `@ghost`
`@rustbot` modify labels: rollup
compiletest: Support matching on diagnostics without a span
Using `//~? ERROR my message` on any line of the test.
The new checks are exhaustive, like all other `//~` checks, and unlike the `error-pattern` directive that is sometimes used now to check for span-less diagnostics.
This will allow to eliminate most on `error-pattern` directives in compile-fail tests (except those that are intentionally imprecise due to platform-specific diagnostics).
I didn't migrate any of `error-pattern`s in this PR though, except those where the migration was necessary for the tests to pass.
Remove InstanceKind::generates_cgu_internal_copy
This PR should not contain any behavior changes. Before this PR, the logic for selecting instantiation mode is spread across all of
* `instantiation_mode`
* `cross_crate_inlinable`
* `generates_cgu_internal_copy`
* `requires_inline`
The last two of those functions are not well-designed. The function that actually decides if we generate a CGU-internal copy is `instantiation_mode`, _not_ `generates_cgu_internal_copy`. The function `requires_inline` documents that it is about the LLVM `inline` attribute and that it is a hint. The LLVM attribute is called `inlinehint`, this function is also used by other codegen backends, and since it is part of instantiation mode selection it is *not* a hint.
The goal of this PR is to start cleaning up the logic into a sequence of checks that have a more logical flow and are easier to customize in the future (to do things like improve incrementality or improve optimizations without causing obscure linker errors because you forgot to update another part of the compiler).
Lower to a memset(undef) when Rvalue::Repeat repeats uninit
Fixes https://github.com/rust-lang/rust/issues/138625.
It is technically correct to just do nothing. But if we actually do nothing, we may miss that this is de-initializing something, so instead we just lower to a single memset that writes undef. This is still superior to the memcpy loop, in both quality of code we hand to the backend and LLVM's final output.
Lower BinOp::Cmp to llvm.{s,u}cmp.* intrinsics
Lowers `mir::BinOp::Cmp` (`three_way_compare` intrinsic) to the corresponding LLVM `llvm.{s,u}cmp.i8.*` intrinsics.
These are the intrinsics mentioned in https://github.com/rust-lang/rust/pull/118310, which are now available in LLVM 19.
I couldn't find any follow-up PRs/discussions about this, please let me know if I missed something.
r? `@scottmcm`
Provide optional `Read`/`Write` methods for stdio
Override more of the default methods for `io::Read` and `io::Write` for stdio types, when efficient to do so, and deduplicate unsupported types.
Tracked in https://github.com/rust-lang/rust/issues/136756.
try-job: x86_64-msvc-1
Reduce FormattingOptions to 64 bits
This is part of https://github.com/rust-lang/rust/issues/99012
This reduces FormattingOptions from 6-7 machine words (384 bits on 64-bit platforms, 224 bits on 32-bit platforms) to just 64 bits (a single register on 64-bit platforms).
Before:
```rust
pub struct FormattingOptions {
flags: u32, // only 6 bits used
fill: char,
align: Option<Alignment>,
width: Option<usize>,
precision: Option<usize>,
}
```
After:
```rust
pub struct FormattingOptions {
/// Bits:
/// - 0-20: fill character (21 bits, a full `char`)
/// - 21: `+` flag
/// - 22: `-` flag
/// - 23: `#` flag
/// - 24: `0` flag
/// - 25: `x?` flag
/// - 26: `X?` flag
/// - 27: Width flag (if set, the width field below is used)
/// - 28: Precision flag (if set, the precision field below is used)
/// - 29-30: Alignment (0: Left, 1: Right, 2: Center, 3: Unknown)
/// - 31: Always set to 1
flags: u32,
/// Width if width flag above is set. Otherwise, always 0.
width: u16,
/// Precision if precision flag above is set. Otherwise, always 0.
precision: u16,
}
```
Avoid no-op unlink+link dances in incr comp
Incremental compilation scales quite poorly with the number of CGUs. This PR improves one reason for that.
The incr comp process hard-links all the files from an old session into a new one, then it runs the backend, which may just hard-link the new session files into the output directory. Then codegen hard-links all the output files back to the new session directory.
This PR (perhaps unimaginatively) fixes the silliness that ensues in the last step. The old `link_or_copy` implementation would be passed pairs of paths which are already the same inode, then it would blindly delete the destination and re-create the hard-link that it just deleted. This PR lets us skip both those operations. We don't skip the other two hard-links.
`cargo +stage1 b && touch crates/core/main.rs && strace -cfw -elink,linkat,unlink,unlinkat cargo +stage1 b` before and then after on `ripgrep-13.0.0`:
```
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
52.56 0.024950 25 978 485 unlink
34.38 0.016318 22 727 linkat
13.06 0.006200 24 249 unlinkat
------ ----------- ----------- --------- --------- ----------------
100.00 0.047467 24 1954 485 total
```
```
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
42.83 0.014521 57 252 unlink
38.41 0.013021 26 486 linkat
18.77 0.006362 25 249 unlinkat
------ ----------- ----------- --------- --------- ----------------
100.00 0.033904 34 987 total
```
This reduces the number of hard-links that are causing perf troubles, noted in https://github.com/rust-lang/rust/issues/64291 and https://github.com/rust-lang/rust/issues/137560
Rollup of 8 pull requests
Successful merges:
- #138435 (Add support for postfix yield expressions)
- #138685 (Use `Option<Ident>` for lowered param names.)
- #138700 (Suggest `-Whelp` when pass `--print lints` to rustc)
- #138727 (Do not rely on `type_var_origin` in `OrphanCheckErr::NonLocalInputType`)
- #138729 (Clean up `FnCtxt::resolve_coroutine_interiors`)
- #138731 (coverage: Add LLVM plumbing for expansion regions)
- #138732 (Use `def_path_str` for def id arg in `UnsupportedOpInfo`)
- #138735 (Remove `llvm` and `llvms` triagebot ping aliases for `icebreakers-llvm` ping group)
r? `@ghost`
`@rustbot` modify labels: rollup
expand: Leave traces when expanding `cfg_attr` attributes
Currently `cfg_trace` just disappears during expansion, but after this PR `#[cfg_attr(some tokens)]` will leave a `#[cfg_attr_trace(some tokens)]` attribute instead of itself in AST after expansion (the new attribute is built-in and inert, its inner tokens are the same as in the original attribute).
This trace attribute can then be used by lints or other diagnostics, #133823 has some examples.
Tokens in these trace attributes are set to an empty token stream, so the traces are non-existent for proc macros and cannot affect any user-observable behavior.
This is also a weakness, because if a proc macro processes some code with the trace attributes, they will be lost, so the traces are best effort rather than precise.
The next step is to do the same thing with `cfg` attributes (`#[cfg(TRUE)]` currently remains in both AST and tokens after expanding, it should be replaced with a trace instead).
The idea belongs to `@estebank.`
Remove `llvm` and `llvms` triagebot ping aliases for `icebreakers-llvm` ping group
Because it's way too easy to confuse LLVM Icebreakers ping group versus trying to ping WG-llvm.
And AFAIK, icebreakers-llvm isn't really used in a good while.
I also fixed the rustc-dev-guide docs about ``@rustbot` ping llvm` (and changed that to the raw ping group name ``@rustbot` icebreakers-llvm`) because it's very confusing.
Previously discussed in [#t-compiler/wg-llvm > Ping group renaming](https://rust-lang.zulipchat.com/#narrow/channel/187780-t-compiler.2Fwg-llvm/topic/Ping.20group.20renaming/with/453005029).
FYI `@rust-lang/wg-llvm`
FYI `@RalfJung` (since you asked in https://github.com/rust-lang/rust/pull/138120#issuecomment-2710466874)
r? `@nikic` (or wg-llvm)
Use `Option<Ident>` for lowered param names.
Parameter patterns are lowered to an `Ident` by `lower_fn_params_to_names`, which is used when lowering bare function types, trait methods, and foreign functions. Currently, there are two exceptional cases where the lowered param can become an empty `Ident`.
- If the incoming pattern is an empty `Ident`. This occurs if the parameter is anonymous, e.g. in a bare function type.
- If the incoming pattern is neither an ident nor an underscore. Any such parameter will have triggered a compile error (hence the `span_delayed_bug`), but lowering still occurs.
This commit replaces these empty `Ident` results with `None`, which eliminates a number of `kw::Empty` uses, and makes it impossible to fail to check for these exceptional cases.
Note: the `FIXME` comment in `is_unwrap_or_empty_symbol` is removed. It actually should have been removed in #138482, the precursor to this PR. That PR changed the lowering of wild patterns to `_` symbols instead of empty symbols, which made the mentioned underscore check load-bearing.
r? ``@compiler-errors``
Add support for postfix yield expressions
We've been having a discussion about whether we want postfix yield, or want to stick with prefix yield, or have both. I figured it's easy enough to support both for now and let us play around with them while the feature is still experimental.
This PR treats `yield x` and `x.yield` as semantically equivalent. There was a suggestion to make `yield x` have a `()` type (so it only works in coroutines with `Resume = ()`. I think that'd be worth trying, either in a later PR, or before this one merges, depending on people's opinions.
#43122
Consider fields to be inhabited if they are unstable
Fixes#133885 with a simple heuristic
r? Nadrieril
Not totally certain if this needs T-lang approval or a crater run.
Represent diagnostic side effects as dep nodes
This changes diagnostic to be tracked as a special dep node (`SideEffect`) instead of having a list of side effects associated with each dep node. `SideEffect` is always red and when forced, it emits the diagnostic and marks itself green. Each emitted diagnostic generates a new `SideEffect` with an unique dep node index.
Some implications of this:
- Diagnostic may now be emitted more than once as they can be emitted once when the `SideEffect` gets marked green and again if the task it depends on needs to be re-executed due to another node being red. It relies on deduplicating of diagnostics to avoid that.
- Anon tasks which emits diagnostics will no longer *incorrectly* be merged with other anon tasks.
- Reusing a CGU will now emit diagnostics from the task generating it.