Deeply normalize obligations in `BestObligation` folder
Built on #139513.
This establishes a somewhat rough invariant that the `Obligation`'s predicate is always deeply normalized in the folder; when we construct a new obligation we normalize it.
Putting this up for discussion since it does affect some goals.
r? lcnr
Introduce a `//@ needs-crate-type` compiletest directive
The `//@ needs-crate-type: $crate_types...` directive takes a comma-separated list of crate types that the target platform must support in order for the test to be run. This allows the test writer to semantically convey that the ignore condition is based on target crate type needs, instead of using a general purpose `//@ ignore-$target` directive (often without comment).
Fixes#132309.
### Example
```rs
//@ needs-crate-type: dylib (ignored on e.g. wasm32-unknown-unknown)
//@ compile-flags: --crate-type=dylib
fn foo() {}
```
### Review advice
- Best reviewed commit-by-commit.
- The impl is not very clean, I briefly attempted to clean up the directive handling but found that more invasive changes are needed, so I'd like to not block on the cleanup for now.
try-job: test-various
try-job: armhf-gnu
Allow drivers to supply a list of extra symbols to intern
Allows adding new symbols as `const`s in external drivers, desirable in Clippy so we can use them in patterns to replace code like 75530e9f72/src/tools/clippy/clippy_lints/src/casts/cast_ptr_alignment.rs (L66)
The Clippy change adds a couple symbols as a demo, the exact `clippy_utils` API and replacing other usages can be done on the Clippy side to minimise sync conflicts
---
try-job: aarch64-gnu
add `core::intrinsics::simd::{simd_extract_dyn, simd_insert_dyn}`
fixes https://github.com/rust-lang/rust/issues/137372
adds `core::intrinsics::simd::{simd_extract_dyn, simd_insert_dyn}`, which contrary to their non-dyn counterparts allow a non-const index. Many platforms (but notably not x86_64 or aarch64) have dedicated instructions for this operation, which stdarch can emit with this change.
Future work is to also make the `Index` operation on the `Simd` type emit this operation, but the intrinsic can't be used directly. We'll need some MIR shenanigans for that.
r? `@ghost`
Reuse the index from promoted nodes when coloring executed tasks
https://github.com/rust-lang/rust/pull/138824 did not correctly handle the case where a dep node was promoted green, but later or concurrently executed. It resulted in multiple dep nodes being allocated to it. This fixes that by checking that the node was not previously green in the encoder lock.
This also fixes a race when forcing diagnostic nodes introduced in https://github.com/rust-lang/rust/pull/138824.
https://github.com/rust-lang/rust/pull/138824 should get reverted on beta.
This should fix#139110.
r? `@oli-obk`
Ensure `swap_nonoverlapping` is really always untyped
This replaces #134954, which was arguably overcomplicated.
## Fixes#134713
Actually using the type passed to `ptr::swap_nonoverlapping` for anything other than its size + align turns out to not work, so this goes back to always erasing the types down to just bytes.
(Except in `const`, which keeps doing the same thing as before to preserve `@RalfJung's` fix from #134689)
## Fixes#134946
I'd previously moved the swapping to use auto-vectorization *on bytes*, but someone pointed out on Discord that the tail loop handling from that left a whole bunch of byte-by-byte swapping around. This goes back to manual tail handling to avoid that, then still triggers auto-vectorization on pointer-width values. (So you'll see `<4 x i64>` on `x86-64-v3` for example.)
Rigidly project missing item due to guaranteed impossible sized predicate
This is a somewhat involved change, but it amounts to treating missing impl items due to guaranteed impossible where clauses (dyn/str/slice sized, cc #135480) as *rigid projections* rather than projecting to an error term, since that was preventing either reporting a proper error (in an empty param env) *or* successfully type checking the code (in the presence of trivially false where clauses).
Fixes https://github.com/rust-lang/rust/issues/138970
r? `@lcnr` `@oli-obk`
report call site of inlined scopes for large assignment lints
Addressed issue: #121672
Tracking issue: #83518
r? `@oli-obk`
I tried to follow your comment about what to do [here](https://github.com/rust-lang/rust/issues/121672#issuecomment-1972783675). However, I'm totally unfamiliar with the code so far (this is my first contribution touching compiler code), so I apologize in advance if I did something stupid 😅
In particular, I'm not sure I use the _correct_ source scope to look for inline data, as there is a whole `IndexVec` of them. My changes definitely did something, as can be seen by the added ui test. However, the result is not as anticipated in the issue:
```
LL | let cell = std::cell::UnsafeCell::new(data);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ value moved from here
```
instead of
```
LL | let cell = std::cell::UnsafeCell::new(data);
| ^^^^ value moved from here
```
raising my suspicion that maybe I got the wrong source scope.
Update `u8`-to-and-from-`i8` suggestions.
`u8::cast_signed` and `i8::cast_unsigned` have been stabilised, but `i8::from_ne_bytes` et al. still suggest using `as i8` or `as u8`.
compiletest: Add directive `dont-require-annotations`
for making matching on specific diagnostic kinds non-exhaustive.
E.g. `//@ dont-require-annotations:ERROR`, like in the examples in this PR.
cc https://github.com/rust-lang/rust/pull/139427#issuecomment-2782827583Closes#132647 FYI `@BoxyUwU` since you've wanted this.
r? `@jieyouxu`
Allow GVN to produce places and not just locals.
That may be too big of a hammer, as we may introduce new deref projections (possible UB footgun + probably not good for perf).
The second commit opts out of introducing projections that don't have a stable offset, which is probably what we want. Hence no new Deref and no new Index projections.
Fixes https://github.com/rust-lang/rust/issues/138936
cc `@scottmcm` `@dianqk`
Update library tracking issue template to set S-tracking-unimplemented
This will help people notice the `S-tracking-*` labels, and if the
tracking issue *is* implemented, they can change the label.
Discussed in a `@rust-lang/libs-api` meeting.
r? `@Amanieu`
Instantiate higher-ranked transmute goal w/ placeholders before emitting sub-obligations
This avoids an ICE where we weren't keeping track of bound variables correctly in the `Freeze` obligations we emit for transmute goals. We could use `rebind` instead on that goal, but I think it's better just to instantiate the binder.
Fixes#139538
r? `@lcnr` or reassign
compiletest: Remove the `--logfile` flag
This flag is deprecated in libtest (#134283), and there's no evidence in-tree of this flag actually being passed to compiletest.
For detailed information about test results, bootstrap parses JSON output from compiletest instead (#108659).
As part of my experimental work on removing the libtest dependency from compiletest, it's useful to be able to disconnect libtest functionality that isn't needed.
Replace last `usize` -> `ptr` transmute in `alloc` with strict provenance API
This replaces the `usize -> ptr` transmute in `RawVecInner::new_in` with a strict provenance API (`NonNull::without_provenance`).
The API is changed to take an `Alignment` which encodes the non-null constraint needed for `Unique` and allows us to do the construction safely.
Two internal-only APIs were added to let us avoid UB-checking in this hot code: `Layout::alignment` to get the `Alignment` type directly rather than as a `usize`, and `Unique::from_non_null` to create `Unique` in const context without a transmute.
Folder experiment: Micro-optimize RegionEraserVisitor
**NOTE:** This is one of a series of perf experiments that I've come up with while sick in bed. I'm assigning them to lqd b/c you're a good reviewer and you'll hopefully be awake when these experiments finish, lol.
r? lqd
The region eraser is very hot, so let's see if we can avoid erasing types (and visiting consts and preds that don't have region-ful types) unnecessarily.
hygiene: Avoid recursion in syntax context decoding
#139241 has two components
- Avoiding recursion during syntax context decoding
- Encoding/decoding only the non-redundant data, and recalculating the redundant data again during decoding
Both of these parts may influence compilation times, possibly in opposite directions.
So this PR contains only the first part to evaluate its effect in isolation.
add `TypingMode::Borrowck`
Shares the first commit with #138499, doesn't really matter which PR to land first 😊😁
Introduces `TypingMode::Borrowck` which unlike `TypingMode::Analysis`, uses the hidden type computed by HIR typeck as the initial value of opaques instead of an unconstrained infer var. This is a part of https://github.com/rust-lang/types-team/issues/129.
Using this new `TypingMode` is unfortunately a breaking change for now, see tests/ui/impl-trait/non-defining-uses/as-projection-term.rs. Using an inference variable as the initial value results in non-defining uses in the defining scope. We therefore only enable it if with `-Znext-solver=globally` or `-Ztyping-mode-borrowck`
To do that the PR contains the following changes:
- `TypeckResults::concrete_opaque_type` are already mapped to the definition of the opaque type
- writeback now checks that the non-lifetime parameters of the opaque are universal
- for this, `fn check_opaque_type_parameter_valid` is moved from `rustc_borrowck` to `rustc_trait_selection`
- we add a new `query type_of_opaque_hir_typeck` which, using the same visitors as MIR typeck, attempts to merge the hidden types from HIR typeck from all defining scopes
- done by adding a `DefiningScopeKind` flag to toggle between using borrowck and HIR typeck
- the visitors stop checking that the MIR type matches the HIR type. This is trivial as the HIR type are now used as the initial hidden types of the opaque. This check is useful as a safeguard when not using `TypingMode::Borrowck`, but adding it to the new structure is annoying and it's not soundness critical, so I intend to not add it back.
- add a `TypingMode::Borrowck` which behaves just like `TypingMode::Analysis` except when normalizing opaque types
- it uses `type_of_opaque_hir_typeck(opaque)` as the initial value after replacing its regions with new inference vars
- it uses structural lookup in the new solver
fixes#112201, fixes#132335, fixes#137751
r? `@compiler-errors` `@oli-obk`
Demote i686-pc-windows-gnu to Tier 2
In accordance with [RFC 3771](https://github.com/rust-lang/rfcs/pull/3771). FCP has been completed.
tracking issue #138422
I also added a stub doc page for the target and renamed the windows-gnullvm page for consistency.
Folder experiment: Monomorphize region resolver
**NOTE:** This is one of a series of perf experiments that I've come up with while sick in bed. I'm assigning them to lqd b/c you're a good reviewer and you'll hopefully be awake when these experiments finish, lol.
r? lqd
This is actually two tweaks to the `RegionFolder`, monomorphizing its callback and accounting for flags to avoid folding unnecessarily.
Initial support for auto traits with default bounds
This PR is part of ["MCP: Low level components for async drop"](https://github.com/rust-lang/compiler-team/issues/727)
Tracking issue: #138781
Summary: https://github.com/rust-lang/rust/pull/120706#issuecomment-1934006762
### Intro
Sometimes we want to use type system to express specific behavior and provide safety guarantees. This behavior can be specified by various "marker" traits. For example, we use `Send` and `Sync` to keep track of which types are thread safe. As the language develops, there are more problems that could be solved by adding new marker traits:
- to forbid types with an async destructor to be dropped in a synchronous context a trait like `SyncDrop` could be used [Async destructors, async genericity and completion futures](https://sabrinajewson.org/blog/async-drop).
- to support [scoped tasks](https://without.boats/blog/the-scoped-task-trilemma/) or in a more general sense to provide a [destruction guarantee](https://zetanumbers.github.io/book/myosotis.html) there is a desire among some users to see a `Leak` (or `Forget`) trait.
- Withoutboats in his [post](https://without.boats/blog/changing-the-rules-of-rust/) reflected on the use of `Move` trait instead of a `Pin`.
All the traits proposed above are supposed to be auto traits implemented for most types, and usually implemented automatically by compiler.
For backward compatibility these traits have to be added implicitly to all bound lists in old code (see below). Adding new default bounds involves many difficulties: many standard library interfaces may need to opt out of those default bounds, and therefore be infected with confusing `?Trait` syntax, migration to a new edition may contain backward compatibility holes, supporting new traits in the compiler can be quite difficult and so forth. Anyway, it's hard to evaluate the complexity until we try the system on a practice.
In this PR we introduce new optional lang items for traits that are added to all bound lists by default, similarly to existing `Sized`. The examples of such traits could be `Leak`, `Move`, `SyncDrop` or something else, it doesn't matter much right now (further I will call them `DefaultAutoTrait`'s). We want to land this change into rustc under an option, so it becomes available in bootstrap compiler. Then we'll be able to do standard library experiments with the aforementioned traits without adding hundreds of `#[cfg(not(bootstrap))]`s. Based on the experiments, we can come up with some scheme for the next edition, in which such bounds are added in a more targeted way, and not just everywhere.
Most of the implementation is basically a refactoring that replaces hardcoded uses of `Sized` with iterating over a list of traits including both `Sized` and the new traits when `-Zexperimental-default-bounds` is enabled (or just `Sized` as before, if the option is not enabled).
### Default bounds for old editions
All existing types, including generic parameters, are considered `Leak`/`Move`/`SyncDrop` and can be forgotten, moved or destroyed in generic contexts without specifying any bounds. New types that cannot be, for example, forgotten and do not implement `Leak` can be added at some point, and they should not be usable in such generic contexts in existing code.
To both maintain this property and keep backward compatibility with existing code, the new traits should be added as default bounds _everywhere_ in previous editions. Besides the implicit `Sized` bound contexts that includes supertrait lists and trait lists in trait objects (`dyn Trait1 + ... + TraitN`). Compiler should also generate implicit `DefaultAutoTrait` implementations for foreign types (`extern { type Foo; }`) because they are also currently usable in generic contexts without any bounds.
#### Supertraits
Adding the new traits as supertraits to all existing traits is potentially necessary, because, for example, using a `Self` param in a trait's associated item may be a breaking change otherwise:
```rust
trait Foo: Sized {
fn new() -> Option<Self>; // ERROR: `Option` requires `DefaultAutoTrait`, but `Self` is not `DefaultAutoTrait`
}
// desugared `Option`
enum Option<T: DefaultAutoTrait + Sized> {
Some(T),
None,
}
```
However, default supertraits can significantly affect compiler performance. For example, if we know that `T: Trait`, the compiler would deduce that `T: DefaultAutoTrait`. It also implies proving `F: DefaultAutoTrait` for each field `F` of type `T` until an explicit impl is be provided.
If the standard library is not modified, then even traits like `Copy` or `Send` would get these supertraits.
In this PR for optimization purposes instead of adding default supertraits, bounds are added to the associated items:
```rust
// Default bounds are generated in the following way:
trait Trait {
fn foo(&self) where Self: DefaultAutoTrait {}
}
// instead of this:
trait Trait: DefaultAutoTrait {
fn foo(&self) {}
}
```
It is not always possible to do this optimization because of backward compatibility:
```rust
pub trait Trait<Rhs = Self> {}
pub trait Trait1 : Trait {} // ERROR: `Rhs` requires `DefaultAutoTrait`, but `Self` is not `DefaultAutoTrait`
```
or
```rust
trait Trait {
type Type where Self: Sized;
}
trait Trait2<T> : Trait<Type = T> {} // ERROR: `???` requires `DefaultAutoTrait`, but `Self` is not `DefaultAutoTrait`
```
Therefore, `DefaultAutoTrait`'s are still being added to supertraits if the `Self` params or type bindings were found in the trait header.
#### Trait objects
Trait objects requires explicit `+ Trait` bound to implement corresponding trait which is not backward compatible:
```rust
fn use_trait_object(x: Box<dyn Trait>) {
foo(x) // ERROR: `foo` requires `DefaultAutoTrait`, but `dyn Trait` is not `DefaultAutoTrait`
}
// implicit T: DefaultAutoTrait here
fn foo<T>(_: T) {}
```
So, for a trait object `dyn Trait` we should add an implicit bound `dyn Trait + DefaultAutoTrait` to make it usable, and allow relaxing it with a question mark syntax `dyn Trait + ?DefaultAutoTrait` when it's not necessary.
#### Foreign types
If compiler doesn't generate auto trait implementations for a foreign type, then it's a breaking change if the default bounds are added everywhere else:
```rust
// implicit T: DefaultAutoTrait here
fn foo<T: ?Sized>(_: &T) {}
extern "C" {
type ExternTy;
}
fn forward_extern_ty(x: &ExternTy) {
foo(x); // ERROR: `foo` requires `DefaultAutoTrait`, but `ExternTy` is not `DefaultAutoTrait`
}
```
We'll have to enable implicit `DefaultAutoTrait` implementations for foreign types at least for previous editions:
```rust
// implicit T: DefaultAutoTrait here
fn foo<T: ?Sized>(_: &T) {}
extern "C" {
type ExternTy;
}
impl DefaultAutoTrait for ExternTy {} // implicit impl
fn forward_extern_ty(x: &ExternTy) {
foo(x); // OK
}
```
### Unresolved questions
New default bounds affect all existing Rust code complicating an already complex type system.
- Proving an auto trait predicate requires recursively traversing the type and proving the predicate for it's fields. This leads to a significant performance regression. Measurements for the stage 2 compiler build show up to 3x regression.
- We hope that fast path optimizations for well known traits could mitigate such regressions at least partially.
- New default bounds trigger some compiler bugs in both old and new trait solver.
- With new default bounds we encounter some trait solver cycle errors that break existing code.
- We hope that these cases are bugs that can be addressed in the new trait solver.
Also migration to a new edition could be quite ugly and enormous, but that's actually what we want to solve. For other issues there's a chance that they could be solved by a new solver.