If I change a rule in ARM64.rules to use the variable name "b" in a
conflicting way, rulegen would previously not complain, and the compiler
would later give a confusing error:
$ go run *.go && go build cmd/compile/internal/ssa
# cmd/compile/internal/ssa
../rewriteARM64.go:24236:10: b.NewValue0 undefined (type int64 has no field or method NewValue0)
Make rulegen complain early about those cases. Sometimes they might
happen to be harmless, but in general they can easily cause confusion or
unintended effect due to shadowing.
After the change, with the same conflicting rule:
$ go run *.go && go build cmd/compile/internal/ssa
2021/03/22 11:31:49 rule ARM64.rules:495 uses the reserved name b
exit status 1
Note that 24 existing rules were using reserved names. It seems like the
shadowing was harmless, as it wasn't causing typechecking issues nor did
it seem to cause unintended behavior when the rule rewrite code ran.
The bool values "b" were renamed "t", since that seems to have a
precedent in other rules and in the fmt package.
Sequential values like "a b c" were renamed to "x y z", since "b" is
reserved.
Finally, "typ" was renamed to "_typ", since there doesn't seem to be an
obviously better answer.
Passes all three of:
$ GOARCH=amd64 go build -toolexec 'toolstash -cmp' -a std
$ GOARCH=arm64 go build -toolexec 'toolstash -cmp' -a std
$ GOARCH=mips64 go build -toolexec 'toolstash -cmp' -a std
Fixes#45154.
Change-Id: I1cce194dc7b477886a9c218c17973e996bcedccf
Reviewed-on: https://go-review.googlesource.com/c/go/+/303549
Trust: Daniel Martí <mvdan@mvdan.cc>
Run-TryBot: Daniel Martí <mvdan@mvdan.cc>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Add generic rule to rewrite the single-precision square root expression
with one single-precision instruction. The optimization will reduce two
times of precision converting between double-precision and single-precision.
On arm64 flatform.
previous:
FCVTSD F0, F0
FSQRTD F0, F0
FCVTDS F0, F0
optimized:
FSQRTS S0, S0
And this patch adds the test case to check the correctness.
This patch refers to CL 241877, contributed by Alice Xu
(dianhong.xu@arm.com)
Change-Id: I6de5d02281c693017ac4bd4c10963dd55989bd7e
Reviewed-on: https://go-review.googlesource.com/c/go/+/276873
Trust: fannie zhang <Fannie.Zhang@arm.com>
Run-TryBot: fannie zhang <Fannie.Zhang@arm.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
MOV*nop and MOV*reg seem superfluous. They are there to keep type
information around that would otherwise get thrown away. Not sure
what we need it for. I think our compiler needs a normalization of
how types are represented in SSA, especially after lowering.
MOV*nop gets in the way of some optimization rules firing, like for
load combining.
For now, just fold MOV*nop and MOV*const. It's certainly safe to
do that, as the type info on the MOV*const isn't ever useful.
R=go1.17
Change-Id: I3630a80afc2455a8e9cd9fde10c7abe05ddc3767
Reviewed-on: https://go-review.googlesource.com/c/go/+/276792
Trust: Keith Randall <khr@golang.org>
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
It just makes the compiler crash. Oops.
Fixes#43099
Change-Id: Id996c14799c1a5d0063ecae3b8770568161c2440
Reviewed-on: https://go-review.googlesource.com/c/go/+/276652
Trust: Keith Randall <khr@golang.org>
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
The shift amount in SRAconst needs to be in the [0,31] range, so stop
MOVWing -1 to SRA in the Rsh lowering rules.
Also see CL 270117.
Passes
$ GOARCH=mips go build -toolexec 'toolstash -cmp' -a std
$ GOARCH=mipsle go build -toolexec 'toolstash -cmp' -a std
Updates #42587
Change-Id: Ib5eb99b82310e404cc2d6f0c619b21b8a15406ce
Reviewed-on: https://go-review.googlesource.com/c/go/+/270558
Trust: Alberto Donizetti <alb.donizetti@gmail.com>
Run-TryBot: Alberto Donizetti <alb.donizetti@gmail.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
mips SRA/SLL/SRL shift amounts are used mod 32; this change aligns the
XXXconst rules to mask the shift amount by &31.
Passes
$ GOARCH=mips go build -toolexec 'toolstash -cmp' -a std
$ GOARCH=mipsle go build -toolexec 'toolstash -cmp' -a std
Fixes#42587
Change-Id: I6003ebd0bc500fba4cf6fb10254e1b557bf8c48f
Reviewed-on: https://go-review.googlesource.com/c/go/+/270117
Trust: Alberto Donizetti <alb.donizetti@gmail.com>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Also make canMergeSym take Syms instead of interface{}
Change-Id: I4926a1fc586aa90e198249d67e5b520404b40869
Reviewed-on: https://go-review.googlesource.com/c/go/+/265817
Trust: Alberto Donizetti <alb.donizetti@gmail.com>
Run-TryBot: Alberto Donizetti <alb.donizetti@gmail.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
rewrite.go has two identical functions isPowerOfTwo and
isPowerOfTwo64; the former has been there for a while, while the
latter was added together with isPowerOfTwo{8,16,32} for use in typed
rules.
This change deletes isPowerOfTwo and switch to using isPowerOfTwo64
everywhere.
Change-Id: If26c94565d2393fac6f0ba117ee7ee2fc915f7cd
Reviewed-on: https://go-review.googlesource.com/c/go/+/265417
Trust: Alberto Donizetti <alb.donizetti@gmail.com>
Run-TryBot: Alberto Donizetti <alb.donizetti@gmail.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
This one is trivial, as there are already 32-bit AND and OR ops used to
implement the more complex 8-bit versions.
Change-Id: Ic48a53ea291d0067ebeab8e96c82e054daf20ae7
Reviewed-on: https://go-review.googlesource.com/c/go/+/263149
Run-TryBot: Michael Pratt <mpratt@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Trust: Michael Pratt <mpratt@google.com>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Keep track of all expressions encountered while
generating a rewrite result, and re-use them whenever possible.
Named expressions may still be used for clarity when desired.
Change-Id: I640dca108763eb8baeff8f9a4169300af3445b82
Reviewed-on: https://go-review.googlesource.com/c/go/+/229800
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Daniel Martí <mvdan@mvdan.cc>
This covers most of the lowering rules.
Passes
GOARCH=mips gotip build -toolexec 'toolstash -cmp' -a std
GOARCH=mipsle gotip build -toolexec 'toolstash -cmp' -a std
Change-Id: I9d00aaebecb36622e3bdaf556e5a9377670bf86b
Reviewed-on: https://go-review.googlesource.com/c/go/+/229102
Reviewed-by: Keith Randall <khr@golang.org>
Extend CL 220417 (which removed the integer Greater and Geq ops) to
floating point comparisons. Greater and Geq can always be
implemented using Less and Leq.
Fixes#37316.
Change-Id: Ieaddb4877dd0ff9037a1dd11d0a9a9e45ced71e7
Reviewed-on: https://go-review.googlesource.com/c/go/+/222397
Run-TryBot: Michael Munday <mike.munday@ibm.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
For 1.15, unless someone really wants it in 1.14.
A performance-sensitive user thought this would be useful,
though "large" was not well-defined. If 128 is large,
there are 139 static instances of "large" copies in the compiler
itself.
Includes test.
Change-Id: I81f20c62da59d37072429f3a22c1809e6fb2946d
Reviewed-on: https://go-review.googlesource.com/c/go/+/205066
Run-TryBot: David Chase <drchase@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
In cases in which we had a named value whose args were all _,
like this rule from ARM.rules:
(MOVBUreg x:(MOVBUload _ _)) -> (MOVWreg x)
We previously inserted
_ = x.Args[1]
even though it is unnecessary.
This change eliminates this pointless bounds check.
And in other cases, we now check bounds just as far as strictly necessary.
No significant movement on any compiler metrics.
Just nicer (and less) code.
Passes toolstash-check -all.
Change-Id: I075dfe9f926cc561cdc705e9ddaab563164bed3a
Reviewed-on: https://go-review.googlesource.com/c/go/+/221781
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
This:
* Simplifies and shortens the generated code for rewrite rules.
* Shrinks cmd/compile by 86k (0.4%) and makes it easier to compile.
* Removes the stmt boundary code wrangling from Value.reset,
in favor of doing it in the one place where it actually does some work,
namely the writebarrier pass. (This was ascertained by inspecting the
code for cases in which notStmtBoundary values were generated.)
Passes toolstash-check -all.
Change-Id: I25671d4c4bbd772f235195d11da090878ea2cc07
Reviewed-on: https://go-review.googlesource.com/c/go/+/221421
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
The generic Greater and Geq ops can always be replaced with the Less and
Leq ops. This CL therefore removes them. This simplifies the compiler since
it reduces the number of operations that need handling in both code and in
rewrite rules. This will be especially true when adding control flow
optimizations such as the integer-in-range optimizations in CL 165998.
Change-Id: If0648b2b19998ac1bddccbf251283f3be4ec3040
Reviewed-on: https://go-review.googlesource.com/c/go/+/220417
Run-TryBot: Michael Munday <mike.munday@ibm.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
CL 213703 converted generated rewrite rules for commutative ops
to use loops instead of duplicated code.
However, it loaded args using expressions like
v.Args[i] and v.Args[i^1], which the compiler could
not eliminate bounds for (including with all outstanding
prove CLs).
Also, given a series of separate rewrite rules for the same op,
we generated bounds checks for every rewrite rule, even though
we were repeatedly loading the same set of args.
This change reduces both sets of bounds checks.
Instead of loading v.Args[i] and v.Args[i^1] for commutative loops,
we now preload v.Args[0] and v.Args[1] into local variables,
and then swap them (as needed) in the commutative loop post statement.
And we now load all top level v.Args into local variables
at the beginning of every rewrite rule function.
The second optimization is the more significant,
but the first helps a little, and they play together
nicely from the perspective of generating the code.
This does increase register pressure, but the reduced bounds
checks more than compensate.
Note that the vast majority of rewrite rules evaluated
are not applied, so the prologue is the most important
part of the rewrite rules.
There is one subtle aspect to the new generated code.
Because the top level v.Args are shared across rewrite rules,
and rule evaluation can swap v_0 and v_1, v_0 and v_1
can end up being swapped from one rule to the next.
That is OK, because any time a rule does not get applied,
they will have been swapped exactly twice.
Passes toolstash-check -all.
name old time/op new time/op delta
Template 213ms ± 2% 211ms ± 2% -0.85% (p=0.000 n=92+96)
Unicode 83.5ms ± 2% 83.2ms ± 2% -0.41% (p=0.004 n=95+90)
GoTypes 737ms ± 2% 733ms ± 2% -0.51% (p=0.000 n=91+94)
Compiler 3.45s ± 2% 3.43s ± 2% -0.44% (p=0.000 n=99+100)
SSA 8.54s ± 1% 8.32s ± 2% -2.56% (p=0.000 n=96+99)
Flate 136ms ± 2% 135ms ± 1% -0.47% (p=0.000 n=96+96)
GoParser 169ms ± 1% 168ms ± 1% -0.33% (p=0.000 n=96+93)
Reflect 456ms ± 3% 455ms ± 3% ~ (p=0.261 n=95+94)
Tar 186ms ± 2% 185ms ± 2% -0.48% (p=0.000 n=94+95)
XML 251ms ± 1% 250ms ± 1% -0.51% (p=0.000 n=91+94)
[Geo mean] 424ms 421ms -0.68%
name old user-time/op new user-time/op delta
Template 275ms ± 1% 274ms ± 2% -0.55% (p=0.000 n=95+98)
Unicode 118ms ± 4% 118ms ± 4% ~ (p=0.642 n=98+90)
GoTypes 983ms ± 1% 980ms ± 1% -0.30% (p=0.000 n=93+93)
Compiler 4.56s ± 6% 4.52s ± 6% -0.72% (p=0.003 n=100+100)
SSA 11.4s ± 1% 11.1s ± 1% -2.50% (p=0.000 n=96+97)
Flate 168ms ± 1% 167ms ± 1% -0.49% (p=0.000 n=92+92)
GoParser 204ms ± 1% 204ms ± 2% -0.27% (p=0.003 n=99+96)
Reflect 599ms ± 2% 598ms ± 2% ~ (p=0.116 n=95+92)
Tar 227ms ± 2% 225ms ± 2% -0.57% (p=0.000 n=95+98)
XML 313ms ± 2% 312ms ± 1% -0.37% (p=0.000 n=89+95)
[Geo mean] 547ms 544ms -0.61%
file before after Δ %
compile 21113112 21109016 -4096 -0.019%
total 131704940 131700844 -4096 -0.003%
Change-Id: Id6c39e0367e597c0c75b8a4b1eb14cc3cbd11956
Reviewed-on: https://go-review.googlesource.com/c/go/+/216218
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Prior to this change, we generated additional rules at rulegen time
for all possible combinations of args to commutative ops.
This is simple and works well, but leads to lots of generated rules.
This in turn has increased the size of the compiler,
made it hard to compile package ssa on small machines,
and provided a disincentive to mark some ops as commutative.
This change reworks how we handle commutative ops.
Instead of generating a rule per argument permutation,
we generate a series of nested loops, one for each commutative op.
Each loop tries both possible argument orderings.
I also considered attempting to canonicalize the inputs to the
rewrite rules. However, because either or both arguments might be
nothing more than an identifier, and because there can be arbitrary
conditions to evaluate during matching, I did not see how to proceed.
The duplicate rule detection now sorts arguments to commutative ops,
so that it can detect commutative-only duplicates.
There may be further optimizations to the new generated code.
In particular, we may not be removing as many bounds checks as before;
I have not investigated deeply. If more work here is needed,
we could do it with more hints or with improvements to the prove pass.
This change has almost no impact on the generated code.
It does not pass toolstash-check, however. In a handful of functions,
for reasons I do not understand, there are minor position changes.
For the entire series ending at this change,
there is negligible compiler performance impact.
The compiler binary shrinks by about 15%,
and package ssa shrinks by about 25%.
Package ssa also compiles ~25% faster with ~25% less memory.
Change-Id: Ia2ee9ceae7be08a17342319d4e31b0bb238a2ee4
Reviewed-on: https://go-review.googlesource.com/c/go/+/213703
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
CL 203284 added a compiler intrinsics from atomic Load8 and Store8 on
several architectures, but missed the lowering on MIPS. This CL fixes
that.
Updates #10958, #24543.
Change-Id: I82e88971554fe8c33ad2bf195a633c44b9ac4cf7
Reviewed-on: https://go-review.googlesource.com/c/go/+/203977
Run-TryBot: Austin Clements <austin@google.com>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
First, renove unnecessary "// cond:" lines from the generated files.
This shaves off about ~7k lines.
Second, join "if cond { break }" statements via "||", which allows us to
deduplicate a large number of them. This shaves off another ~25k lines.
This change is not for readability or simplicity; but rather, to avoid
unnecessary verbosity that makes the generated files larger. All in all,
git reports that the generated files overall weigh ~200KiB less, or
about 2.7% less.
While at it, add a -trace flag to rulegen.
Updates #33644.
Change-Id: I3fac0290a6066070cc62400bf970a4ae0929470a
Reviewed-on: https://go-review.googlesource.com/c/go/+/196498
Run-TryBot: Daniel Martí <mvdan@mvdan.cc>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
First, add cpu and memory profiling flags, as these are useful to see
where rulegen is spending its time. It now takes many seconds to run on
a recent laptop, so we have to keep an eye on what it's doing.
Second, stop writing '_ = var' lines to keep imports and variables used
at all times. Now that rulegen removes all such unused names, they're
unnecessary.
To perform the removal, lean on go/types to first detect what names are
unused. We can configure it to give us all the type-checking errors in a
file, so we can collect all "declared but not used" errors in a single
pass.
We then use astutil.Apply to remove the relevant nodes based on the line
information from each unused error. This allows us to apply the changes
without having to do extra parser+printer roundtrips to plaintext, which
are far too expensive.
We need to do multiple such passes, as removing an unused variable
declaration might then make another declaration unused. Two passes are
enough to clean every file at the moment, so add a limit of three passes
for now to avoid eating cpu uncontrollably by accident.
The resulting performance of the changes above is a ~30% loss across the
table, since go/types is fairly expensive. The numbers were obtained
with 'benchcmd Rulegen go run *.go', which involves compiling rulegen
itself, but that seems reflective of how the program is used.
name old time/op new time/op delta
Rulegen 5.61s ± 0% 7.36s ± 0% +31.17% (p=0.016 n=5+4)
name old user-time/op new user-time/op delta
Rulegen 7.20s ± 1% 9.92s ± 1% +37.76% (p=0.016 n=5+4)
name old sys-time/op new sys-time/op delta
Rulegen 135ms ±19% 169ms ±17% +25.66% (p=0.032 n=5+5)
name old peak-RSS-bytes new peak-RSS-bytes delta
Rulegen 71.0MB ± 2% 85.6MB ± 2% +20.56% (p=0.008 n=5+5)
We can live with a bit more resource usage, but the time/op getting
close to 10s isn't good. To win that back, introduce concurrency in
main.go. This further increases resource usage a bit, but the real time
on this quad-core laptop is greatly reduced. The final benchstat is as
follows:
name old time/op new time/op delta
Rulegen 5.61s ± 0% 3.97s ± 1% -29.26% (p=0.008 n=5+5)
name old user-time/op new user-time/op delta
Rulegen 7.20s ± 1% 13.91s ± 1% +93.09% (p=0.008 n=5+5)
name old sys-time/op new sys-time/op delta
Rulegen 135ms ±19% 269ms ± 9% +99.17% (p=0.008 n=5+5)
name old peak-RSS-bytes new peak-RSS-bytes delta
Rulegen 71.0MB ± 2% 226.3MB ± 1% +218.72% (p=0.008 n=5+5)
It might be possible to reduce the cpu or memory usage in the future,
such as configuring go/types to do less work, or taking shortcuts to
avoid having to run it many times. For now, ~2x cpu and ~4x memory usage
seems like a fair trade for a faster and better rulegen.
Finally, we can remove the old code that tried to remove some unused
variables in a hacky and unmaintainable way.
Change-Id: Iff9e83e3f253babf5a1bd48cc993033b8550cee6
Reviewed-on: https://go-review.googlesource.com/c/go/+/189798
Run-TryBot: Daniel Martí <mvdan@mvdan.cc>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
"Division by invariant integers using multiplication" paper
by Granlund and Montgomery contains a method for directly computing
divisibility (x%c == 0 for c constant) by means of the modular inverse.
The method is further elaborated in "Hacker's Delight" by Warren Section 10-17
This general rule can compute divisibilty by one multiplication and a compare
for odd divisors and an additional rotate for even divisors.
To apply the divisibility rule, we must take into account
the rules to rewrite x%c = x-((x/c)*c) and (x/c) for c constant on the first
optimization pass "opt". This complicates the matching as we want to match
only in the cases where the result of (x/c) is not also available.
So, we must match on the expanded form of (x/c) in the expression x == c*(x/c)
in the "late opt" pass after common subexpresion elimination.
Note, that if there is an intermediate opt pass introduced in the future we
could simplify these rules by delaying the magic division rewrite to "late opt"
and matching directly on (x/c) in the intermediate opt pass.
Additional rules to lower the generic RotateLeft* ops were also applied.
On amd64, the divisibility check is 25-50% faster.
name old time/op new time/op delta
DivconstI64-4 2.08ns ± 0% 2.08ns ± 1% ~ (p=0.881 n=5+5)
DivisibleconstI64-4 2.67ns ± 0% 2.67ns ± 1% ~ (p=1.000 n=5+5)
DivisibleWDivconstI64-4 2.67ns ± 0% 2.67ns ± 0% ~ (p=0.683 n=5+5)
DivconstU64-4 2.08ns ± 1% 2.08ns ± 1% ~ (p=1.000 n=5+5)
DivisibleconstU64-4 2.77ns ± 1% 1.55ns ± 2% -43.90% (p=0.008 n=5+5)
DivisibleWDivconstU64-4 2.99ns ± 1% 2.99ns ± 1% ~ (p=1.000 n=5+5)
DivconstI32-4 1.53ns ± 2% 1.53ns ± 0% ~ (p=1.000 n=5+5)
DivisibleconstI32-4 2.23ns ± 0% 2.25ns ± 3% ~ (p=0.167 n=5+5)
DivisibleWDivconstI32-4 2.27ns ± 1% 2.27ns ± 1% ~ (p=0.429 n=5+5)
DivconstU32-4 1.78ns ± 0% 1.78ns ± 1% ~ (p=1.000 n=4+5)
DivisibleconstU32-4 2.52ns ± 2% 1.26ns ± 0% -49.96% (p=0.000 n=5+4)
DivisibleWDivconstU32-4 2.63ns ± 0% 2.85ns ±10% +8.29% (p=0.016 n=4+5)
DivconstI16-4 1.54ns ± 0% 1.54ns ± 0% ~ (p=0.333 n=4+5)
DivisibleconstI16-4 2.10ns ± 0% 2.10ns ± 1% ~ (p=0.571 n=4+5)
DivisibleWDivconstI16-4 2.22ns ± 0% 2.23ns ± 1% ~ (p=0.556 n=4+5)
DivconstU16-4 1.09ns ± 0% 1.01ns ± 1% -7.74% (p=0.000 n=4+5)
DivisibleconstU16-4 1.83ns ± 0% 1.26ns ± 0% -31.52% (p=0.008 n=5+5)
DivisibleWDivconstU16-4 1.88ns ± 0% 1.89ns ± 1% ~ (p=0.365 n=5+5)
DivconstI8-4 1.54ns ± 1% 1.54ns ± 1% ~ (p=1.000 n=5+5)
DivisibleconstI8-4 2.10ns ± 0% 2.11ns ± 0% ~ (p=0.238 n=5+4)
DivisibleWDivconstI8-4 2.22ns ± 0% 2.23ns ± 2% ~ (p=0.762 n=5+5)
DivconstU8-4 0.92ns ± 1% 0.94ns ± 1% +2.65% (p=0.008 n=5+5)
DivisibleconstU8-4 1.66ns ± 0% 1.26ns ± 1% -24.28% (p=0.008 n=5+5)
DivisibleWDivconstU8-4 1.79ns ± 0% 1.80ns ± 1% ~ (p=0.079 n=4+5)
A follow-up change will address the signed division case.
Updates #30282
Change-Id: I7e995f167179aa5c76bb10fbcbeb49c520943403
Reviewed-on: https://go-review.googlesource.com/c/go/+/168037
Run-TryBot: Brian Kessler <brian.m.kessler@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
A lot of the naked for loops begin like:
for {
v := b.Control
if v.Op != OpConstBool {
break
}
...
return true
}
Instead, write them out in a more compact and readable way:
for v.Op == OpConstBool {
...
return true
}
This requires the addition of two bytes.Buffer writers, as this helps us
make a decision based on future pieces of generated code. This probably
makes rulegen slightly slower, but that's not noticeable; the code
generation still takes ~3.5s on my laptop, excluding build time.
The "v := b.Control" declaration can be moved to the top of each
function. Even though the rules can modify b.Control when firing, they
also make the function return, so v can't be used again.
While at it, remove three unnecessary lines from the top of each
rewriteBlock func.
In total, this results in ~4k lines removed from the generated code, and
a slight improvement in readability.
Change-Id: I317e4c6a4842c64df506f4513375475fad2aeec5
Reviewed-on: https://go-review.googlesource.com/c/go/+/167399
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
A few examples (for accessing a slice of length 3):
s[-1] runtime error: index out of range [-1]
s[3] runtime error: index out of range [3] with length 3
s[-1:0] runtime error: slice bounds out of range [-1:]
s[3:0] runtime error: slice bounds out of range [3:0]
s[3:-1] runtime error: slice bounds out of range [:-1]
s[3:4] runtime error: slice bounds out of range [:4] with capacity 3
s[0:3:4] runtime error: slice bounds out of range [::4] with capacity 3
Note that in cases where there are multiple things wrong with the
indexes (e.g. s[3:-1]), we report one of those errors kind of
arbitrarily, currently the rightmost one.
An exhaustive set of examples is in issue30116[u].out in the CL.
The message text has the same prefix as the old message text. That
leads to slightly awkward phrasing but hopefully minimizes the chance
that code depending on the error text will break.
Increases the size of the go binary by 0.5% (amd64). The panic functions
take arguments in registers in order to keep the size of the compiled code
as small as possible.
Fixes#30116
Change-Id: Idb99a827b7888822ca34c240eca87b7e44a04fdd
Reviewed-on: https://go-review.googlesource.com/c/go/+/161477
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
This reduces the number of extra bounds check hints we need to
insert. For example, rather than producing:
_ = v.Args[2]
x := v.Args[0]
y := v.Args[1]
z := v.Args[2]
We now produce:
z := v.Args[2]
x := v.Args[0]
y := v.Args[1]
This gets rid of about 7000 lines of code from the rewrite rules.
Change-Id: I1291cf0f82e8d035a6d65bce7dee6cedee04cbcd
Reviewed-on: https://go-review.googlesource.com/c/go/+/167397
Reviewed-by: Daniel Martí <mvdan@mvdan.cc>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
The sheer length of the generated rules files makes my
editor and git client unhappy.
This change is a small step towards shortening them.
We recognize a few magic variables during rulegen: b, config, fe, typ.
Of these, only b appears prone to false positives.
By tightening the heuristic and fixing one case in MIPS.rules,
we can make the heuristic enough that it has no failures.
That allows us to remove the hedge assignments to _,
removing 3000 pointless lines of code.
Change-Id: I080cde5db28c8277cb3fd9ddcd829306c9a27785
Reviewed-on: https://go-review.googlesource.com/c/go/+/166979
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Normally this happens when combining a sign extension and a load. We
want the resulting combo-instruction to get the line number of the
load, not the line number of the sign extension.
For each rule, compute where we should get its line number by finding
a value on the match side that can fault. Use that line number for
all the new values created on the right-hand side.
Fixes#27201
Change-Id: I19b3c6f468fff1a3c0bfbce2d6581828557064a3
Reviewed-on: https://go-review.googlesource.com/c/156937
Reviewed-by: David Chase <drchase@google.com>
(SGTconst [c] (SRLconst _ [d])) && 0 <= int32(c) && uint32(d) <= 31 && 1<<(32-uint32(d)) <= int32(c) -> (MOVWconst [1])
This rule is problematic. 1<<(32-uint32(d)) <= int32(c) meant to
say that it is true if c is greater than the largest possible
value of the right shift. But when d==1, 1<<(32-1) is negative
and results in the wrong comparison.
Rewrite the rules in a more direct way.
Fixes#29402.
Change-Id: I5940fc9538d9bc3a4bcae8aa34672867540dc60e
Reviewed-on: https://go-review.googlesource.com/c/155798
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
During development and debugging, I often want to
write noteRule(fmt.Sprintf(...)), and end up
manually adding the import to the generated code.
Let's just make it always available instead.
Change-Id: I1e2d47c98ba056e1b5da42e35fb6ad26f1d9cc3d
Reviewed-on: https://go-review.googlesource.com/c/145207
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Martin Möhrmann <moehrmann@google.com>
Lack of a well-defined order between VarDef and related
address operations sometimes causes problems with store order
and write barrier transformations; glitches in the order are
made irreparable (by later optimizations) if the two parts of
the glitch straddle a split in the original block caused by
insertion of a write barrier diamond.
Fix this by creating a LocalAddr for addresses of locals
(what VarDef matters for) that takes a memory input to
help make the order explicit. Addr is modified to only
be legal for SB operand, so there is no overlap between
Addr and LocalAddr uses (there may be some downstream
cleanup from this).
Changes to generic.rules and rewrite.go ensure that codegen
tests continue to pass; CSE of LocalAddr is impaired, not
quite sure of the cost.
Fixes#26105.
Change-Id: Id4192b4440aa4e9d7ba54a465c456df9b530b515
Reviewed-on: https://go-review.googlesource.com/122483
Run-TryBot: David Chase <drchase@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
On amd64, Ctz must include special handling of zeros.
But the prove pass has enough information to detect whether the input
is non-zero, allowing a more efficient lowering.
Introduce new CtzNonZero ops to capture and use this information.
Benchmark code:
func BenchmarkVisitBits(b *testing.B) {
b.Run("8", func(b *testing.B) {
for i := 0; i < b.N; i++ {
x := uint8(0xff)
for x != 0 {
sink = bits.TrailingZeros8(x)
x &= x - 1
}
}
})
// and similarly so for 16, 32, 64
}
name old time/op new time/op delta
VisitBits/8-8 7.27ns ± 4% 5.58ns ± 4% -23.35% (p=0.000 n=28+26)
VisitBits/16-8 14.7ns ± 7% 10.5ns ± 4% -28.43% (p=0.000 n=30+28)
VisitBits/32-8 27.6ns ± 8% 19.3ns ± 3% -30.14% (p=0.000 n=30+26)
VisitBits/64-8 44.0ns ±11% 38.0ns ± 5% -13.48% (p=0.000 n=30+30)
Fixes#25077
Change-Id: Ie6e5bd86baf39ee8a4ca7cadcf56d934e047f957
Reviewed-on: https://go-review.googlesource.com/109358
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Currently, each architecture lowers OpConvert to an arch-specific
OpXXXconvert. This is silly because OpConvert means the same thing on
all architectures and is logically a no-op that exists only to keep
track of conversions to and from unsafe.Pointer. Furthermore, lowering
it makes it harder to recognize in other analyses, particularly
liveness analysis.
This CL eliminates the lowering of OpConvert, leaving it as the
generic op until code generation time.
The main complexity here is that we still need to register-allocate
OpConvert operations. Currently, each arch's lowered OpConvert
specifies all GP registers in its register mask. Ideally, OpConvert
wouldn't affect value homing at all, and we could just copy the home
of OpConvert's source, but this can potentially home an OpConvert in a
LocalSlot, which neither regalloc nor stackalloc expect. Rather than
try to disentangle this assumption from regalloc and stackalloc, we
continue to register-allocate OpConvert, but teach regalloc that
OpConvert can be allocated to any allocatable GP register.
For #24543.
Change-Id: I795a6aee5fd94d4444a7bafac3838a400c9f7bb6
Reviewed-on: https://go-review.googlesource.com/108496
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
In addition to look nicer to the eye, this allows to reformat
and indent rules without causing spurious changes to the generated
file, making it easier to spot functional changes.
After this CL, all CLs that will aggregate rules through
the new "|" functionality should cause no changes to the
generated files.
Change-Id: Icec283585ba8d7b91c79d76513c1d83dca4b30aa
Reviewed-on: https://go-review.googlesource.com/95216
Run-TryBot: Giovanni Bajo <rasky@develer.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Add a compiler intrinsic for getcallersp. So we are able to get
rid of the argument (not done in this CL).
Change-Id: Ic38fda1c694f918328659ab44654198fb116668d
Reviewed-on: https://go-review.googlesource.com/69350
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
Reviewed-by: David Chase <drchase@google.com>
Add support for generating TBZ/TBNZ instructions.
The bit-test-and-branch pattern shows up in a number of
important places, including the runtime (gc bitmaps).
Before this change, there were 3 TB[N]?Z instructions in the Go tool,
all of which were in hand-written assembly. After this change, there
are 285. Also, the go1 benchmark binary gets about 4.5kB smaller.
Fixes#21361
Change-Id: I170c138b852754b9b8df149966ca5e62e6dfa771
Reviewed-on: https://go-review.googlesource.com/54470
Run-TryBot: Philip Hofer <phofer@umich.edu>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Apply the fix in CL 44355 to MIPS.
ARM64 has these rules but commented out for performance reason.
Fix the commented rules, in case they are enabled in the future.
Enhance the test so it triggers the failure on ARM and MIPS without
the fix.
Updates #20530.
Change-Id: I82d77448e3939a545fe519d0a29a164f8fa5417c
Reviewed-on: https://go-review.googlesource.com/44430
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Noticed while looking at #20356.
Cuts 160k (1%) off of the cmd/compile binary.
Change-Id: If2397bc6971d6be9be6975048adecb0b5efa6d66
Reviewed-on: https://go-review.googlesource.com/43501
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>