Mangle rustc_std_internal_symbols functions
This reduces the risk of issues when using a staticlib or rust dylib compiled with a different rustc version in a rust program. Currently this will either (in the case of staticlib) cause a linker error due to duplicate symbol definitions, or (in the case of rust dylibs) cause rustc_std_internal_symbols functions to be silently overridden. As rust gets more commonly used inside the implementation of libraries consumed with a C interface (like Spidermonkey, Ruby YJIT (curently has to do partial linking of all rust code to hide all symbols not part of the C api), the Rusticl OpenCL implementation in mesa) this is becoming much more of an issue. With this PR the only symbols remaining with an unmangled name are rust_eh_personality (LLVM doesn't allow renaming it) and `__rust_no_alloc_shim_is_unstable`.
Helps mitigate https://github.com/rust-lang/rust/issues/104707
try-job: aarch64-gnu-debug
try-job: aarch64-apple
try-job: x86_64-apple-1
try-job: x86_64-mingw-1
try-job: i686-mingw-1
try-job: x86_64-msvc-1
try-job: i686-msvc-1
try-job: test-various
try-job: armhf-gnu
change config.toml to bootstrap.toml
Currently, both Bootstrap and Cargo uses same name as their configuration file, which can be confusing. This PR is based on a discussion to rename `config.toml` to `bootstrap.toml` for Bootstrap. Closes: https://github.com/rust-lang/rust/issues/126875.
I have split the PR into atomic commits to make it easier to review. Once the changes are finalized, I will squash them. I am particularly concerned about the changes made to modules that are not part of Bootstrap. How should we handle those changes? Should we ping the respective maintainers?
Install licenses into `share/doc/rust/licenses`
This changes the path from "licences" to "licenses" for consistency
across the repo, including the usage directly around this line. This is
a US/UK spelling difference, but I believe the US spelling is also more
common in open source in general.
Emit function declarations for functions with `#[linkage="extern_weak"]`
Currently, when declaring an extern weak function in Rust, we use the following syntax:
```rust
unsafe extern "C" {
#[linkage = "extern_weak"]
static FOO: Option<unsafe extern "C" fn() -> ()>;
}
```
This allows runtime-checking the extern weak symbol through the Option.
When emitting LLVM-IR, the Rust compiler currently emits this static as an i8, and a pointer that is initialized with the value of the global i8 and represents the nullabilty e.g.
```
`@FOO` = extern_weak global i8
`@_rust_extern_with_linkage_FOO` = internal global ptr `@FOO`
```
This approach does not work well with CFI, where we need to attach CFI metadata to a concrete function declaration, which was pointed out in https://github.com/rust-lang/rust/issues/115199.
This change switches to emitting a proper function declaration instead of a global i8. This allows CFI to work for extern_weak functions. Example:
```
`@_rust_extern_with_linkage_FOO` = internal global ptr `@FOO`
...
declare !type !61 !type !62 !type !63 !type !64 extern_weak void `@FOO(double)` unnamed_addr #6
```
We keep initializing the Rust internal symbol with the function declaration, which preserves the correct behavior for runtime checking the Option.
r? `@rcvalle`
cc `@jakos-sec`
try-job: test-various
Add `From<{integer}>` for `f16`/`f128` impls
This PR adds `impl From<{bool,i8,u8}> for f16` and `impl From<{bool,i8,u8,i16,u16,i32,u32}> for f128`.
The `From<{i64,u64}> for f128` impls are left commented out as adding them would allow using `f128` on stable before it is stabilised like in the following example:
```rust
fn f<T: From<u64>>(x: T) -> T { x }
fn main() {
let x = f(1.0); // the type of the literal is inferred to be `f128`
}
```
None of the impls added in this PR have this issue as they are all, at minimum, also implemented by `f64`.
This PR will need a crater run for the `From<{i32,u32}>` impls, as `f64` is no longer the only float type to implement them (similar to the cause of #125198).
cc `@bjoernager`
r? `@tgross35`
Tracking issue: #116909
added some new test to check for result and options opt
Apologies for the delay. Finally have some time to get back into contributing.
## Context
- Added some tests to show optimization on result and options for 64 and 128 bits
- Relevant issue https://github.com/rust-lang/rust/issues/101210
## Some newb questions from me
- [x] My local llvm IR has `nuw` in `result_nop_match_128` etc whereas [godbolt version](https://rust.godbolt.org/z/Td9zoT5zn) doesn't have. So I put optional there, but not sure if it's desirable (maybe I'm not using the compiled llvm in the repo). I ran the test with
```bash
./x test tests/codegen/try_question_mark_nop.rs
```
- [x] Unless I'm reading it wrongly, but `option_nop_match_128` and `option_nop_traits_128` look to be **not** optimized away?
Update:
Here's the test for future reference
```rust
// CHECK-LABEL: `@option_nop_match_128`
#[no_mangle]
pub fn option_nop_match_128(x: Option<i128>) -> Option<i128> {
// CHECK: start:
// CHECK-NEXT: %trunc = trunc nuw i128 %0 to i1
// CHECK-NEXT: br i1 %trunc, label %bb3, label %bb4
// CHECK: bb3:
// CHECK-NEXT: %2 = getelementptr inbounds {{(nuw )?}}i8, ptr %_0, i64 16
// CHECK-NEXT: store i128 %1, ptr %2, align 16
// CHECK: bb4:
// CHECK-NEXT: %storemerge = phi i128 [ 1, %bb3 ], [ 0, %start ]
// CHECK-NEXT: store i128 %storemerge, ptr %_0, align 16
// CHECK-NEXT: ret void
match x {
Some(x) => Some(x),
None => None,
}
}
```
r? `@scottmcm`
Update sccache to 0.10.0
This time, does it also for Windows and macOS. This unifies the sccache version across all OSes that we use.
r? `@ghost`
try-job: dist-aarch64-apple
try-job: dist-x86_64-apple
try-job: dist-x86_64-msvc
try-job: dist-x86_64-msvc-alt
try-job: dist-i686-msvc
try-job: dist-aarch64-msvc
try-job: dist-x86_64-linux
try-job: dist-x86_64-netbsd
Do not suggest using `-Zmacro-backtrace` for builtin macros
For macros that are implemented on the compiler, or that are annotated with `rustc_diagnostic_item`, which have arbitrary implementations from the point of view of the user and might as well be intrinsics, we do *not* mention the `-Zmacro-backtrace` flag. This includes `derive`s and standard macros like `panic!` and `format!`.
This PR adds a field to every `Span`'s `ExpnData` stating whether it comes from a builtin macro. This is determined by the macro being annotated with either `#[rustc_builtin_macro]` or `#[rustc_diagnostic_item]`. An alternative to using these attributes that already exist for other uses would be to introduce another attribute like `#[rustc_no_backtrace]` to have finer control on which macros are affected (for example, an error within `vec![]` now doesn't mention the backtrace, but one could make the case that it should). Ideally, instead of carrying this information in the `ExpnData` we'd instead try to query the `DefId` of the macro (that is already stored) to see if it is annotated in some way, but we do not have access to the `TyCtxt` from `rustc_errors`.
r? `@petrochenkov`
Pass `CI_JOB_DOC_URL` to Docker
Fix-up for https://github.com/rust-lang/rust/pull/136911. I always forget to pass new environment variables to Docker images.. 🤦♂️
r? `@marcoieni`
try-job: x86_64-fuchsia
remove must_use from <*const T>::expose_provenance
`<*mut T>::expose_provenance` does not have this attribute, and in fact the function is documented to have a side-effect, so there are perfectly legitimate use-cases where the return value would be ignored.
uefi: helpers: Add DevicePathNode abstractions
- UEFI device path is a series of nodes layed out in a contiguous memory region. So it makes sense to use Iterator abstraction for modeling DevicePaths
- This PR has been split off from #135368 for easier review. The allow dead_code will be removed in #135368
cc `@nicholasbishop`