metal-examples-tutorials/raytracing/Shaders.metal

223 lines
7.6 KiB
Metal

//
// Shaders.metal
//
// Created by Marius Horga on 7/7/18.
//
#include <metal_stdlib>
#include <simd/simd.h>
#import "ShaderTypes.h"
using namespace metal;
struct Ray {
packed_float3 origin;
uint mask;
packed_float3 direction;
float maxDistance;
float3 color;
};
struct Intersection {
float distance;
int primitiveIndex;
float2 coordinates;
};
kernel void rayKernel(uint2 tid [[thread_position_in_grid]],
constant Uniforms & uniforms [[buffer(0)]],
device Ray *rays [[buffer(1)]],
device float2 *random [[buffer(2)]],
texture2d<float, access::write> dstTex [[texture(0)]])
{
if (tid.x < uniforms.width && tid.y < uniforms.height) {
unsigned int rayIdx = tid.y * uniforms.width + tid.x;
device Ray & ray = rays[rayIdx];
float2 pixel = (float2)tid;
float2 r = random[(tid.y % 16) * 16 + (tid.x % 16)];
pixel += r;
float2 uv = (float2)pixel / float2(uniforms.width, uniforms.height);
uv = uv * 2.0f - 1.0f;
constant Camera & camera = uniforms.camera;
ray.origin = camera.position;
ray.direction = normalize(uv.x * camera.right +
uv.y * camera.up +
camera.forward);
ray.mask = RAY_MASK_PRIMARY;
ray.maxDistance = INFINITY;
ray.color = float3(1.0f, 1.0f, 1.0f);
dstTex.write(float4(0.0f, 0.0f, 0.0f, 0.0f), tid);
}
}
template<typename T>
inline T interpolateVertexAttribute(device T *attributes, Intersection intersection) {
float3 uvw;
uvw.xy = intersection.coordinates;
uvw.z = 1.0f - uvw.x - uvw.y;
unsigned int triangleIndex = intersection.primitiveIndex;
T T0 = attributes[triangleIndex * 3 + 0];
T T1 = attributes[triangleIndex * 3 + 1];
T T2 = attributes[triangleIndex * 3 + 2];
return uvw.x * T0 + uvw.y * T1 + uvw.z * T2;
}
inline void sampleAreaLight(constant AreaLight & light,
float2 u,
float3 position,
thread float3 & lightDirection,
thread float3 & lightColor,
thread float & lightDistance)
{
u = u * 2.0f - 1.0f;
float3 samplePosition = light.position +
light.right * u.x +
light.up * u.y;
lightDirection = samplePosition - position;
lightDistance = length(lightDirection);
float inverseLightDistance = 1.0f / max(lightDistance, 1e-3f);
lightDirection *= inverseLightDistance;
lightColor = light.color;
lightColor *= (inverseLightDistance * inverseLightDistance);
lightColor *= saturate(dot(-lightDirection, light.forward));
}
inline float3 sampleCosineWeightedHemisphere(float2 u) {
float phi = 2.0f * M_PI_F * u.x;
float cos_phi;
float sin_phi = sincos(phi, cos_phi);
float cos_theta = sqrt(u.y);
float sin_theta = sqrt(1.0f - cos_theta * cos_theta);
return float3(sin_theta * cos_phi, cos_theta, sin_theta * sin_phi);
}
inline float3 alignHemisphereWithNormal(float3 sample, float3 normal) {
float3 up = normal;
float3 right = normalize(cross(normal, float3(0.0072f, 1.0f, 0.0034f)));
float3 forward = cross(right, up);
return sample.x * right + sample.y * up + sample.z * forward;
}
kernel void shadeKernel(uint2 tid [[thread_position_in_grid]],
constant Uniforms & uniforms,
device Ray *rays,
device Ray *shadowRays,
device Intersection *intersections,
device float3 *vertexColors,
device float3 *vertexNormals,
device float2 *random,
device uint *triangleMasks,
texture2d<float, access::write> dstTex)
{
if (tid.x < uniforms.width && tid.y < uniforms.height) {
unsigned int rayIdx = tid.y * uniforms.width + tid.x;
device Ray & ray = rays[rayIdx];
device Ray & shadowRay = shadowRays[rayIdx];
device Intersection & intersection = intersections[rayIdx];
float3 color = ray.color;
if (ray.maxDistance >= 0.0f && intersection.distance >= 0.0f) {
uint mask = triangleMasks[intersection.primitiveIndex];
if (mask == TRIANGLE_MASK_GEOMETRY) {
float3 intersectionPoint = ray.origin + ray.direction * intersection.distance;
float3 surfaceNormal = interpolateVertexAttribute(vertexNormals, intersection);
surfaceNormal = normalize(surfaceNormal);
float2 r = random[(tid.y % 16) * 16 + (tid.x % 16)];
float3 lightDirection;
float3 lightColor;
float lightDistance;
sampleAreaLight(uniforms.light, r, intersectionPoint, lightDirection,
lightColor, lightDistance);
lightColor *= saturate(dot(surfaceNormal, lightDirection));
color *= interpolateVertexAttribute(vertexColors, intersection);
shadowRay.origin = intersectionPoint + surfaceNormal * 1e-3f;
shadowRay.direction = lightDirection;
shadowRay.mask = RAY_MASK_SHADOW;
shadowRay.maxDistance = lightDistance - 1e-3f;
shadowRay.color = lightColor * color;
float3 sampleDirection = sampleCosineWeightedHemisphere(r);
sampleDirection = alignHemisphereWithNormal(sampleDirection, surfaceNormal);
ray.origin = intersectionPoint + surfaceNormal * 1e-3f;
ray.direction = sampleDirection;
ray.color = color;
ray.mask = RAY_MASK_SECONDARY;
}
else {
dstTex.write(float4(uniforms.light.color, 1.0f), tid);
ray.maxDistance = -1.0f;
shadowRay.maxDistance = -1.0f;
}
}
else {
ray.maxDistance = -1.0f;
shadowRay.maxDistance = -1.0f;
}
}
}
kernel void shadowKernel(uint2 tid [[thread_position_in_grid]],
constant Uniforms & uniforms,
device Ray *shadowRays,
device float *intersections,
texture2d<float, access::read_write> dstTex)
{
if (tid.x < uniforms.width && tid.y < uniforms.height) {
unsigned int rayIdx = tid.y * uniforms.width + tid.x;
device Ray & shadowRay = shadowRays[rayIdx];
float intersectionDistance = intersections[rayIdx];
if (shadowRay.maxDistance >= 0.0f && intersectionDistance < 0.0f) {
float3 color = shadowRay.color;
color += dstTex.read(tid).xyz;
dstTex.write(float4(color, 1.0f), tid);
}
}
}
kernel void accumulateKernel(uint2 tid [[thread_position_in_grid]],
constant Uniforms & uniforms,
texture2d<float> renderTex,
texture2d<float, access::read_write> accumTex)
{
if (tid.x < uniforms.width && tid.y < uniforms.height) {
float3 color = renderTex.read(tid).xyz;
if (uniforms.frameIndex > 0) {
float3 prevColor = accumTex.read(tid).xyz;
prevColor *= uniforms.frameIndex;
color += prevColor;
color /= (uniforms.frameIndex + 1);
}
accumTex.write(float4(color, 1.0f), tid);
}
}
struct Vertex {
float4 position [[position]];
float2 uv;
};
constant float2 quadVertices[] = {
float2(-1, -1),
float2(-1, 1),
float2( 1, 1),
float2(-1, -1),
float2( 1, 1),
float2( 1, -1)
};
vertex Vertex vertexShader(unsigned short vid [[vertex_id]])
{
float2 position = quadVertices[vid];
Vertex out;
out.position = float4(position, 0, 1);
out.uv = position * 0.5f + 0.5f;
return out;
}
fragment float4 fragmentShader(Vertex in [[stage_in]],
texture2d<float> tex)
{
constexpr sampler s(min_filter::nearest, mag_filter::nearest, mip_filter::none);
float3 color = tex.sample(s, in.uv).xyz;
color = color / (1.0f + color);
return float4(color, 1.0f);
}