// // Shaders.metal // // Created by Marius Horga on 7/7/18. // #include #include #import "ShaderTypes.h" using namespace metal; struct Ray { packed_float3 origin; uint mask; packed_float3 direction; float maxDistance; float3 color; }; struct Intersection { float distance; int primitiveIndex; float2 coordinates; }; kernel void rayKernel(uint2 tid [[thread_position_in_grid]], constant Uniforms & uniforms [[buffer(0)]], device Ray *rays [[buffer(1)]], device float2 *random [[buffer(2)]], texture2d dstTex [[texture(0)]]) { if (tid.x < uniforms.width && tid.y < uniforms.height) { unsigned int rayIdx = tid.y * uniforms.width + tid.x; device Ray & ray = rays[rayIdx]; float2 pixel = (float2)tid; float2 r = random[(tid.y % 16) * 16 + (tid.x % 16)]; pixel += r; float2 uv = (float2)pixel / float2(uniforms.width, uniforms.height); uv = uv * 2.0f - 1.0f; constant Camera & camera = uniforms.camera; ray.origin = camera.position; ray.direction = normalize(uv.x * camera.right + uv.y * camera.up + camera.forward); ray.mask = RAY_MASK_PRIMARY; ray.maxDistance = INFINITY; ray.color = float3(1.0f, 1.0f, 1.0f); dstTex.write(float4(0.0f, 0.0f, 0.0f, 0.0f), tid); } } template inline T interpolateVertexAttribute(device T *attributes, Intersection intersection) { float3 uvw; uvw.xy = intersection.coordinates; uvw.z = 1.0f - uvw.x - uvw.y; unsigned int triangleIndex = intersection.primitiveIndex; T T0 = attributes[triangleIndex * 3 + 0]; T T1 = attributes[triangleIndex * 3 + 1]; T T2 = attributes[triangleIndex * 3 + 2]; return uvw.x * T0 + uvw.y * T1 + uvw.z * T2; } inline void sampleAreaLight(constant AreaLight & light, float2 u, float3 position, thread float3 & lightDirection, thread float3 & lightColor, thread float & lightDistance) { u = u * 2.0f - 1.0f; float3 samplePosition = light.position + light.right * u.x + light.up * u.y; lightDirection = samplePosition - position; lightDistance = length(lightDirection); float inverseLightDistance = 1.0f / max(lightDistance, 1e-3f); lightDirection *= inverseLightDistance; lightColor = light.color; lightColor *= (inverseLightDistance * inverseLightDistance); lightColor *= saturate(dot(-lightDirection, light.forward)); } inline float3 sampleCosineWeightedHemisphere(float2 u) { float phi = 2.0f * M_PI_F * u.x; float cos_phi; float sin_phi = sincos(phi, cos_phi); float cos_theta = sqrt(u.y); float sin_theta = sqrt(1.0f - cos_theta * cos_theta); return float3(sin_theta * cos_phi, cos_theta, sin_theta * sin_phi); } inline float3 alignHemisphereWithNormal(float3 sample, float3 normal) { float3 up = normal; float3 right = normalize(cross(normal, float3(0.0072f, 1.0f, 0.0034f))); float3 forward = cross(right, up); return sample.x * right + sample.y * up + sample.z * forward; } kernel void shadeKernel(uint2 tid [[thread_position_in_grid]], constant Uniforms & uniforms, device Ray *rays, device Ray *shadowRays, device Intersection *intersections, device float3 *vertexColors, device float3 *vertexNormals, device float2 *random, device uint *triangleMasks, texture2d dstTex) { if (tid.x < uniforms.width && tid.y < uniforms.height) { unsigned int rayIdx = tid.y * uniforms.width + tid.x; device Ray & ray = rays[rayIdx]; device Ray & shadowRay = shadowRays[rayIdx]; device Intersection & intersection = intersections[rayIdx]; float3 color = ray.color; if (ray.maxDistance >= 0.0f && intersection.distance >= 0.0f) { uint mask = triangleMasks[intersection.primitiveIndex]; if (mask == TRIANGLE_MASK_GEOMETRY) { float3 intersectionPoint = ray.origin + ray.direction * intersection.distance; float3 surfaceNormal = interpolateVertexAttribute(vertexNormals, intersection); surfaceNormal = normalize(surfaceNormal); float2 r = random[(tid.y % 16) * 16 + (tid.x % 16)]; float3 lightDirection; float3 lightColor; float lightDistance; sampleAreaLight(uniforms.light, r, intersectionPoint, lightDirection, lightColor, lightDistance); lightColor *= saturate(dot(surfaceNormal, lightDirection)); color *= interpolateVertexAttribute(vertexColors, intersection); shadowRay.origin = intersectionPoint + surfaceNormal * 1e-3f; shadowRay.direction = lightDirection; shadowRay.mask = RAY_MASK_SHADOW; shadowRay.maxDistance = lightDistance - 1e-3f; shadowRay.color = lightColor * color; float3 sampleDirection = sampleCosineWeightedHemisphere(r); sampleDirection = alignHemisphereWithNormal(sampleDirection, surfaceNormal); ray.origin = intersectionPoint + surfaceNormal * 1e-3f; ray.direction = sampleDirection; ray.color = color; ray.mask = RAY_MASK_SECONDARY; } else { dstTex.write(float4(uniforms.light.color, 1.0f), tid); ray.maxDistance = -1.0f; shadowRay.maxDistance = -1.0f; } } else { ray.maxDistance = -1.0f; shadowRay.maxDistance = -1.0f; } } } kernel void shadowKernel(uint2 tid [[thread_position_in_grid]], constant Uniforms & uniforms, device Ray *shadowRays, device float *intersections, texture2d dstTex) { if (tid.x < uniforms.width && tid.y < uniforms.height) { unsigned int rayIdx = tid.y * uniforms.width + tid.x; device Ray & shadowRay = shadowRays[rayIdx]; float intersectionDistance = intersections[rayIdx]; if (shadowRay.maxDistance >= 0.0f && intersectionDistance < 0.0f) { float3 color = shadowRay.color; color += dstTex.read(tid).xyz; dstTex.write(float4(color, 1.0f), tid); } } } kernel void accumulateKernel(uint2 tid [[thread_position_in_grid]], constant Uniforms & uniforms, texture2d renderTex, texture2d accumTex) { if (tid.x < uniforms.width && tid.y < uniforms.height) { float3 color = renderTex.read(tid).xyz; if (uniforms.frameIndex > 0) { float3 prevColor = accumTex.read(tid).xyz; prevColor *= uniforms.frameIndex; color += prevColor; color /= (uniforms.frameIndex + 1); } accumTex.write(float4(color, 1.0f), tid); } } struct Vertex { float4 position [[position]]; float2 uv; }; constant float2 quadVertices[] = { float2(-1, -1), float2(-1, 1), float2( 1, 1), float2(-1, -1), float2( 1, 1), float2( 1, -1) }; vertex Vertex vertexShader(unsigned short vid [[vertex_id]]) { float2 position = quadVertices[vid]; Vertex out; out.position = float4(position, 0, 1); out.uv = position * 0.5f + 0.5f; return out; } fragment float4 fragmentShader(Vertex in [[stage_in]], texture2d tex) { constexpr sampler s(min_filter::nearest, mag_filter::nearest, mip_filter::none); float3 color = tex.sample(s, in.uv).xyz; color = color / (1.0f + color); return float4(color, 1.0f); }