small_gicp/scripts/plot_odometry_accuracy.py

92 lines
2.8 KiB
Python

#!/usr/bin/python3
import re
import os
import pathos
import subprocess
from collections import namedtuple
from matplotlib import pyplot
def run_evo(commands):
p = subprocess.Popen(commands, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
p.wait()
stdout, stderr = p.communicate()
if len(stderr):
print(stderr.decode('utf-8'))
result = stdout.decode('utf-8')
results = {}
for item in re.findall(r'([a-z]+)\s+([0-9]+\.[0-9]+)', result):
results[item[0]] = float(item[1])
return results
def eval_ape(gt_filename, traj_filename, t_offset=0.0):
ret = run_evo(['evo_ape', 'kitti', gt_filename, traj_filename, '-a'])
return ret
def eval_rpe(gt_filename, traj_filename, delta_unit='m', delta=100, all_pairs=True, t_offset=0.0):
commands = ['evo_rpe', 'kitti', gt_filename, traj_filename, '-a', '--delta_unit', str(delta_unit), '--delta', str(delta)]
if all_pairs:
commands += ['--all_pairs']
ret = run_evo(commands)
return ret
def main():
gt_path = '/home/koide/datasets/ssd/kitti/poses/00_lidar.txt'
results_path = os.path.dirname(__file__) + '/results'
filenames = []
for filename in os.listdir(results_path):
found = re.findall(r'traj_lidar_(\S+)_(\d+).txt', filename)
if not found:
continue
method = found[0][0] + '_' + found[0][1]
filenames.append((method, results_path + '/' + filename))
methods = ['pcl_1', 'fast_gicp_128', 'fast_vgicp_128', 'small_gicp_1', 'small_gicp_tbb_128', 'small_gicp_omp_128', 'small_vgicp_tbb_128']
labels = ['pcl_gicp', 'fast_gicp', 'fast_vgicp', 'small_gicp', 'small_gicp (tbb)', 'small_gicp (omp)', 'small_vgicp']
Result = namedtuple('Result', ['ape', 'rpe100', 'rpe400', 'rpe800'])
def evaluate(inputs):
method, filename = inputs
print('.', end='', flush=True)
ape = eval_ape(gt_path, filename)
rpe100 = eval_rpe(gt_path, filename, delta=100)
rpe400 = eval_rpe(gt_path, filename, delta=400)
rpe800 = eval_rpe(gt_path, filename, delta=800)
return method, Result(ape, rpe100, rpe400, rpe800)
print('evaluating')
with pathos.multiprocessing.ProcessingPool() as p:
errors = p.map(evaluate, [(method, filename) for method, filename in filenames if method in methods])
print()
results = {}
for method, error in errors:
results[method] = error
for method, label in zip(methods, labels):
ape, rpe100, rpe400, rpe800 = results[method]
print('{:20s} : APE={:.3f} +- {:.3f} RPE(100)={:.3f} +- {:.3f} RPE(400)={:.3f} +- {:.3f} RPE(800)={:.3f} +- {:.3f}'
.format(label, ape['rmse'], ape['std'], rpe100['rmse'], rpe100['std'], rpe400['rmse'], rpe400['std'], rpe800['rmse'], rpe800['std']))
fig, axes = pyplot.subplots(1, 3, figsize=(15, 5))
apes = [results[method].ape['rmse'] for method in methods]
axes[0].bar(labels, apes)
pyplot.show()
if __name__ == '__main__':
main()