small_gicp/src/python/voxelmap.cpp

152 lines
5.0 KiB
C++

// SPDX-FileCopyrightText: Copyright 2024 Kenji Koide
// SPDX-License-Identifier: MIT
#include <iostream>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/numpy.h>
#include <pybind11/eigen.h>
#include <pybind11/functional.h>
#include <small_gicp/points/point_cloud.hpp>
#include <small_gicp/ann/kdtree_omp.hpp>
#include <small_gicp/ann/gaussian_voxelmap.hpp>
namespace py = pybind11;
using namespace small_gicp;
template <typename VoxelMap, bool has_normals, bool has_covs>
auto define_class(py::module& m, const std::string& name) {
py::class_<VoxelMap> vox(m, name.c_str());
vox
.def(
py::init<double>(),
py::arg("leaf_size"),
R"pbdoc(
Construct a Incremental voxelmap.
Notes
-----
This class supports incremental point cloud insertion and LRU-based voxel deletion that removes voxels that are not recently referenced.
It can handle arbitrary number of voxels and arbitrary range of voxel coordinates (in 32-bit int range).
Parameters
----------
leaf_size : float
Voxel size.
)pbdoc")
.def(
"__repr__",
[=](const VoxelMap& voxelmap) {
std::stringstream sst;
sst << "small_gicp." << name << "(" << 1.0 / voxelmap.inv_leaf_size << " m / " << voxelmap.size() << " voxels)" << std::endl;
return sst.str();
})
.def("__len__", [](const VoxelMap& voxelmap) { return voxelmap.size(); })
.def(
"size",
&VoxelMap::size,
R"pbdoc(
Get the number of voxels.
Returns
-------
num_voxels : int
Number of voxels.
)pbdoc")
.def(
"insert",
[](VoxelMap& voxelmap, const PointCloud& points, const Eigen::Matrix4d& T) { voxelmap.insert(points, Eigen::Isometry3d(T)); },
py::arg("points"),
py::arg("T") = Eigen::Matrix4d::Identity(),
R"pbdoc(
Insert a point cloud into the voxel map and delete voxels that are not recently accessed.
Note
----
If this class is based on FlatContainer (i.e., IncrementalVoxelMap*), input points are ignored if
1) there are too many points in the cell or
2) the input point is too close to existing points in the cell.
Parameters
----------
points : :class:`PointCloud`
Input source point cloud.
T : numpy.ndarray, optional
Transformation matrix to be applied to the input point cloud (i.e., T_voxelmap_source). (default: identity)
)pbdoc")
.def(
"set_lru",
[](VoxelMap& voxelmap, size_t horizon, size_t clear_cycle) {
voxelmap.lru_horizon = horizon;
voxelmap.lru_clear_cycle = clear_cycle;
},
py::arg("horizon") = 100,
py::arg("clear_cycle") = 10,
R"pbdoc(
Set the LRU cache parameters.
Parameters
----------
horizon : int, optional
LRU horizon size. Voxels that have not been accessed for lru_horizon steps are deleted. (default: 100)
clear_cycle : int, optional
LRU clear cycle. Voxel deletion is performed every lru_clear_cycle steps. (default: 10)
)pbdoc")
.def(
"voxel_points",
[](const VoxelMap& voxelmap) -> Eigen::MatrixXd {
auto points = traits::voxel_points(voxelmap);
return Eigen::Map<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>>(points[0].data(), points.size(), 4);
},
R"pbdoc(
Get the voxel points.
Returns
-------
voxel_points : numpy.ndarray
Voxel points. (Nx4)
)pbdoc");
if constexpr (has_normals) {
vox.def(
"voxel_normals",
[](const VoxelMap& voxelmap) -> Eigen::MatrixXd {
auto normals = traits::voxel_normals(voxelmap);
return Eigen::Map<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>>(normals[0].data(), normals.size(), 4);
},
R"pbdoc(
Get the voxel normals.
Returns
-------
voxel_normals : numpy.ndarray
Voxel normals. (Nx4)
)pbdoc");
}
if constexpr (has_covs) {
vox.def(
"voxel_covs",
[](const VoxelMap& voxelmap) -> Eigen::MatrixXd {
auto covs = traits::voxel_covs(voxelmap);
return Eigen::Map<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>>(covs[0].data(), covs.size(), 16);
},
R"pbdoc(
Get the voxel normals.
Returns
-------
voxel_covs : list of numpy.ndarray
Voxel covariance matrices. (Nx4x4)
)pbdoc");
}
};
void define_voxelmap(py::module& m) {
define_class<IncrementalVoxelMap<FlatContainerPoints>, false, false>(m, "IncrementalVoxelMap");
define_class<IncrementalVoxelMap<FlatContainerNormal>, true, false>(m, "IncrementalVoxelMapNormal");
define_class<IncrementalVoxelMap<FlatContainerCov>, false, true>(m, "IncrementalVoxelMapCov");
define_class<IncrementalVoxelMap<FlatContainerNormalCov>, true, true>(m, "IncrementalVoxelMapNormalCov");
define_class<GaussianVoxelMap, false, true>(m, "GaussianVoxelMap");
}