small_gicp/scripts/plot_odometry.py

89 lines
3.6 KiB
Python

#!/usr/bin/python3
import os
import re
import numpy
from collections import namedtuple
from matplotlib import pyplot
Result = namedtuple('Result', ['reg_mean', 'reg_std', 'tp_mean', 'tp_std'])
def parse_result(filename):
reg_mean = None
reg_std = None
throughput_mean = None
throughput_std = None
with open(filename, 'r') as f:
for line in f.readlines():
found = re.findall(r'([^=]+)\s*\+\-\s*(\S+)', line)
if not found or len(found) != 2:
found = re.findall(r'total_throughput=(\S+)', line)
if found:
throughput_mean = float(found[0])
continue
reg_mean = float(found[0][0].strip())
reg_std = float(found[0][1].strip())
throughput_mean = float(found[1][0].strip())
throughput_std = float(found[1][1].strip())
return Result(reg_mean, reg_std, throughput_mean, throughput_std)
def main():
results_path = os.path.dirname(__file__) + '/results'
results = {}
for filename in os.listdir(results_path):
found = re.findall(r'odometry_benchmark_(\S+)_(\d+).txt', filename)
if not found:
continue
rets = parse_result(results_path + '/' + filename)
results['{}_{}'.format(found[0][0], found[0][1])] = rets
fig, axes = pyplot.subplots(2, 2, figsize=(24, 12))
num_threads = [1, 2, 4, 8, 16, 32, 64, 128]
pcl_reg = results['pcl_1'].reg_mean
pcl_tp = results['pcl_1'].tp_mean
axes[0, 0].plot([num_threads[0], num_threads[-1]], [pcl_reg, pcl_reg], label='pcl_gicp', linestyle='--')
axes[0, 1].plot([num_threads[0], num_threads[-1]], [pcl_tp, pcl_tp], label='pcl_gicp', linestyle='--')
axes[1, 0].plot([num_threads[0], num_threads[-1]], [1.0, 1.0], label='pcl_gicp', linestyle='--')
axes[1, 1].plot([num_threads[0], num_threads[-1]], [1.0, 1.0], label='pcl_gicp', linestyle='--')
methods = ['fast_gicp', 'fast_vgicp', 'small_gicp_omp', 'small_gicp_tbb', 'small_vgicp_tbb', 'small_vgicp_omp']
markers = ['o', 'o', '^', '^', 's', 's']
for method, marker in zip(methods, markers):
reg_means = [results['{}_{}'.format(method, N)].reg_mean for N in num_threads]
axes[0, 0].plot(num_threads, reg_means, label=method, marker=marker)
axes[1, 0].plot(num_threads, pcl_reg / numpy.array(reg_means), label=method, marker=marker)
for method, marker in zip(methods, markers):
tp_means = [results['{}_{}'.format(method, N)].tp_mean for N in num_threads]
axes[0, 1].plot(num_threads, tp_means, label=method, marker=marker)
axes[1, 1].plot(num_threads, pcl_tp / numpy.array(tp_means), label=method, marker=marker)
flow_tp_means = [results['small_gicp_tbb_flow_{}'.format(N)].tp_mean for N in num_threads]
axes[0, 1].plot(num_threads, flow_tp_means, label='small_gicp_tbb_flow', marker='*')
axes[1, 1].plot(num_threads, pcl_tp / numpy.array(flow_tp_means), label='small_gicp_tbb_flow', marker='*')
axes[0, 0].set_title('Net registration time (KdTree construction + cov estimation + pose estimation)')
axes[1, 0].set_title('Net registration time (KdTree construction + cov estimation + pose estimation)')
axes[0, 1].set_title('Total throughput (Downsampling + registration)')
axes[1, 1].set_title('Total throughput (Downsampling + registration)')
axes[0, 0].set_ylabel('Time [msec/scan]')
axes[0, 1].set_ylabel('Time [msec/scan]')
axes[1, 0].set_ylabel('Processing speed ratio (pcl_gicp=1.0)')
axes[1, 1].set_ylabel('Processing speed ratio (pcl_gicp=1.0)')
for i in range(2):
for j in range(2):
axes[i, j].set_xlabel('Number of threads = [1, 2, 4, ..., 128]')
axes[i, j].set_xscale('log')
axes[i, j].legend()
axes[i, j].grid()
fig.savefig('odometry_time.svg')
pyplot.show()
if __name__ == "__main__":
main()