#!/usr/bin/python3 import re import os import numpy from matplotlib import pyplot from collections import namedtuple def parse_result(filename): num_points = [] results = {} with open(filename, 'r') as f: for line in f.readlines(): matched = re.match(r'num_threads=(\d+)', line) if matched: num_threads = int(matched.group(1)) continue matched = re.match(r'num_points=(\d+)', line) if matched: num_points.append(int(matched.group(1))) continue matched = re.match(r'(\S+)_times=(\S+) \+\- (\S+)', line) if matched: method = matched.group(1) mean = float(matched.group(2)) std = float(matched.group(3)) if method not in results: results[method] = [] results[method].append(mean) continue return (num_threads, num_points, results) def main(): results_path = os.path.dirname(__file__) + '/results' results = [] for filename in os.listdir(results_path): matched = re.match(r'kdtree_benchmark_(\d+).txt', filename) if not matched: continue results.append(parse_result(results_path + '/' + filename)) results = sorted(results, key=lambda x: x[0]) num_threads = [x[0] for x in results] num_points = results[0][1] fig, axes = pyplot.subplots(1, 2, figsize=(12, 2)) axes[0].plot(num_points, results[0][2]['kdtree'], label='kdtree (nanoflann)', marker='o', linestyle='--') for idx in [1, 3, 5, 7, 8]: N = num_threads[idx] axes[0].plot(num_points, results[idx][2]['kdtree_omp'], label='kdtree_omp (%d threads)' % N, marker='s') axes[0].plot(num_points, results[idx][2]['kdtree_tbb'], label='kdtree_tbb (%d threads)' % N, marker='^') baseline = numpy.array(results[0][2]['kdtree']) axes[1].plot([num_threads[0], num_threads[-1]], [1.0, 1.0], label='kdtree (nanoflann)', linestyle='--') for idx in [5]: N = num_points[idx] axes[1].plot(num_threads, baseline[idx] / [x[2]['kdtree_omp'][idx] for x in results], label='omp (num_points=%d)' % N, marker='s') axes[1].plot(num_threads, baseline[idx] / [x[2]['kdtree_tbb'][idx] for x in results], label='tbb (num_points=%d)' % N, marker='^') axes[1].set_xscale('log') axes[0].set_xlabel('Number of points') axes[0].set_ylabel('KdTree construction time [msec/scan]') axes[1].set_xlabel('Number of threads = [1, 2, 4, ..., 128]') axes[1].set_ylabel('Processing speed ratio (single-thread = 1.0)') axes[0].grid() axes[1].grid() axes[0].legend() axes[1].legend() fig.savefig('kdtree_time.svg') pyplot.show() if __name__ == '__main__': main()