#!/usr/bin/python3 import os import time import argparse import collections import numpy import small_gicp from pyridescence import * # Odometry estimation based on scan-to-scan matching class ScanToScanMatchingOdometry(object): def __init__(self, num_threads): self.num_threads = num_threads self.T_last_current = numpy.identity(4) self.T_world_lidar = numpy.identity(4) self.target = None def estimate(self, raw_points): downsampled, tree = small_gicp.preprocess_points(raw_points, 0.25, num_threads=self.num_threads) if self.target is None: self.target = (downsampled, tree) return self.T_world_lidar result = small_gicp.align(self.target[0], downsampled, self.target[1], self.T_last_current, num_threads=self.num_threads) self.T_last_current = result.T_target_source self.T_world_lidar = self.T_world_lidar @ result.T_target_source self.target = (downsampled, tree) return self.T_world_lidar # Odometry estimation based on scan-to-model matching class ScanToModelMatchingOdometry(object): def __init__(self, num_threads): self.num_threads = num_threads self.T_last_current = numpy.identity(4) self.T_world_lidar = numpy.identity(4) self.target = small_gicp.GaussianVoxelMap(1.0) self.target.set_lru(horizon=100, clear_cycle=10) def estimate(self, raw_points): downsampled, tree = small_gicp.preprocess_points(raw_points, 0.25, num_threads=self.num_threads) if self.target.size() == 0: self.target.insert(downsampled) return self.T_world_lidar result = small_gicp.align(self.target, downsampled, self.T_world_lidar @ self.T_last_current, num_threads=self.num_threads) self.T_last_current = numpy.linalg.inv(self.T_world_lidar) @ result.T_target_source self.T_world_lidar = result.T_target_source self.target.insert(downsampled, self.T_world_lidar) guik.viewer().update_drawable('target', glk.create_pointcloud_buffer(self.target.voxel_points()[:, :3]), guik.Rainbow()) return self.T_world_lidar def main(): parser = argparse.ArgumentParser() parser.add_argument('dataset_path', help='/path/to/kitti/velodyne') parser.add_argument('--num_threads', help='Number of threads', type=int, default=4) parser.add_argument('-m', '--model', help='Use scan-to-model matching odometry', action='store_true') args = parser.parse_args() dataset_path = args.dataset_path filenames = sorted([dataset_path + '/' + x for x in os.listdir(dataset_path) if x.endswith('.bin')]) if not args.model: odom = ScanToScanMatchingOdometry(args.num_threads) else: odom = ScanToModelMatchingOdometry(args.num_threads) viewer = guik.viewer() viewer.disable_vsync() time_queue = collections.deque(maxlen=500) for i, filename in enumerate(filenames): raw_points = numpy.fromfile(filename, dtype=numpy.float32).reshape(-1, 4)[:, :3] t1 = time.time() T = odom.estimate(raw_points) t2 = time.time() time_queue.append(t2 - t1) viewer.lookat(T[:3, 3]) viewer.update_drawable('points', glk.create_pointcloud_buffer(raw_points), guik.FlatOrange(T).add('point_scale', 2.0)) if i % 10 == 0: viewer.update_drawable('pos_{}'.format(i), glk.primitives.coordinate_system(), guik.VertexColor(T)) viewer.append_text('avg={:.3f} msec/scan last={:.3f} msec/scan'.format(1000 * numpy.mean(time_queue), 1000 * time_queue[-1])) if not viewer.spin_once(): break if __name__ == '__main__': main()