#!/usr/bin/python3 import os import re import numpy from collections import namedtuple from matplotlib import pyplot Result = namedtuple('Result', ['reg_mean', 'reg_std', 'tp_mean', 'tp_std']) def parse_result(filename): reg_mean = None reg_std = None throughput_mean = None throughput_std = None with open(filename, 'r') as f: for line in f.readlines(): found = re.findall(r'([^=]+)\s*\+\-\s*(\S+)', line) if not found or len(found) != 2: found = re.findall(r'total_throughput=(\S+)', line) if found: throughput_mean = float(found[0]) continue reg_mean = float(found[0][0].strip()) reg_std = float(found[0][1].strip()) throughput_mean = float(found[1][0].strip()) throughput_std = float(found[1][1].strip()) return Result(reg_mean, reg_std, throughput_mean, throughput_std) def main(): results_path = os.path.dirname(__file__) + '/results' results = {} for filename in os.listdir(results_path): found = re.findall(r'odometry_benchmark_(\S+)_(\d+).txt', filename) if not found: continue rets = parse_result(results_path + '/' + filename) results['{}_{}'.format(found[0][0], found[0][1])] = rets fig, axes = pyplot.subplots(2, 2, figsize=(24, 12)) num_threads = [1, 2, 4, 8, 16, 32, 64, 128] pcl_reg = results['pcl_1'].reg_mean pcl_tp = results['pcl_1'].tp_mean axes[0, 0].plot([num_threads[0], num_threads[-1]], [pcl_reg, pcl_reg], label='pcl_gicp', linestyle='--') axes[0, 1].plot([num_threads[0], num_threads[-1]], [pcl_tp, pcl_tp], label='pcl_gicp', linestyle='--') axes[1, 0].plot([num_threads[0], num_threads[-1]], [1.0, 1.0], label='pcl_gicp', linestyle='--') axes[1, 1].plot([num_threads[0], num_threads[-1]], [1.0, 1.0], label='pcl_gicp', linestyle='--') methods = ['fast_gicp', 'fast_vgicp', 'small_gicp_omp', 'small_gicp_tbb', 'small_vgicp_tbb', 'small_vgicp_omp'] markers = ['o', 'o', '^', '^', 's', 's'] for method, marker in zip(methods, markers): reg_means = [results['{}_{}'.format(method, N)].reg_mean for N in num_threads] axes[0, 0].plot(num_threads, reg_means, label=method, marker=marker) axes[1, 0].plot(num_threads, pcl_reg / numpy.array(reg_means), label=method, marker=marker) for method, marker in zip(methods, markers): tp_means = [results['{}_{}'.format(method, N)].tp_mean for N in num_threads] axes[0, 1].plot(num_threads, tp_means, label=method, marker=marker) axes[1, 1].plot(num_threads, pcl_tp / numpy.array(tp_means), label=method, marker=marker) flow_tp_means = [results['small_gicp_tbb_flow_{}'.format(N)].tp_mean for N in num_threads] axes[0, 1].plot(num_threads, flow_tp_means, label='small_gicp_tbb_flow', marker='*') axes[1, 1].plot(num_threads, pcl_tp / numpy.array(flow_tp_means), label='small_gicp_tbb_flow', marker='*') axes[0, 0].set_title('Net registration time (KdTree construction + cov estimation + pose estimation)') axes[1, 0].set_title('Net registration time (KdTree construction + cov estimation + pose estimation)') axes[0, 1].set_title('Total throughput (Downsampling + registration)') axes[1, 1].set_title('Total throughput (Downsampling + registration)') axes[0, 0].set_ylabel('Time [msec/scan]') axes[0, 1].set_ylabel('Time [msec/scan]') axes[1, 0].set_ylabel('Processing speed ratio (pcl_gicp=1.0)') axes[1, 1].set_ylabel('Processing speed ratio (pcl_gicp=1.0)') for i in range(2): for j in range(2): axes[i, j].set_xlabel('Number of threads = [1, 2, 4, ..., 128]') axes[i, j].set_xscale('log') axes[i, j].legend() axes[i, j].grid() fig.savefig('odometry_time.svg') pyplot.show() if __name__ == "__main__": main()