mirror of https://github.com/koide3/small_gicp.git
feat: add batch knn for kdtrees and docs (#65)
* feat: add batch knn for kdtrees and docs * fix: update batch nns func name
This commit is contained in:
parent
06193e3be2
commit
5e367c87f7
|
|
@ -16,11 +16,22 @@ using namespace small_gicp;
|
|||
|
||||
void define_kdtree(py::module& m) {
|
||||
// KdTree
|
||||
py::class_<KdTree<PointCloud>, std::shared_ptr<KdTree<PointCloud>>>(m, "KdTree", "KdTree") //
|
||||
py::class_<KdTree<PointCloud>, std::shared_ptr<KdTree<PointCloud>>>(m, "KdTree") //
|
||||
.def(
|
||||
py::init([](const PointCloud::ConstPtr& points, int num_threads) { return std::make_shared<KdTree<PointCloud>>(points, KdTreeBuilderOMP(num_threads)); }),
|
||||
py::arg("points"),
|
||||
py::arg("num_threads") = 1)
|
||||
py::arg("num_threads") = 1,
|
||||
R"""(
|
||||
Construct a KdTree from a point cloud.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
points : PointCloud
|
||||
The input point cloud.
|
||||
num_threads : int, optional
|
||||
The number of threads to use for KdTree construction. Default is 1.
|
||||
)""")
|
||||
|
||||
.def(
|
||||
"nearest_neighbor_search",
|
||||
[](const KdTree<PointCloud>& kdtree, const Eigen::Vector3d& pt) {
|
||||
|
|
@ -30,7 +41,23 @@ void define_kdtree(py::module& m) {
|
|||
return std::make_tuple(found, k_index, k_sq_dist);
|
||||
},
|
||||
py::arg("pt"),
|
||||
"Search the nearest neighbor. Returns a tuple of found flag, index, and squared distance.")
|
||||
R"""(
|
||||
Find the nearest neighbor to a given point.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pt : NDArray, shape (3,)
|
||||
The input point.
|
||||
|
||||
Returns
|
||||
-------
|
||||
found : int
|
||||
Whether a neighbor was found (1 if found, 0 if not).
|
||||
k_index : int
|
||||
The index of the nearest neighbor in the point cloud.
|
||||
k_sq_dist : float
|
||||
The squared distance to the nearest neighbor.
|
||||
)""")
|
||||
.def(
|
||||
"knn_search",
|
||||
[](const KdTree<PointCloud>& kdtree, const Eigen::Vector3d& pt, int k) {
|
||||
|
|
@ -41,5 +68,86 @@ void define_kdtree(py::module& m) {
|
|||
},
|
||||
py::arg("pt"),
|
||||
py::arg("k"),
|
||||
"Search the k-nearest neighbors. Returns a pair of indices and squared distances.");
|
||||
}
|
||||
R"""(
|
||||
Find the k nearest neighbors to a given point.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pt : NDArray, shape (3,)
|
||||
The input point.
|
||||
k : int
|
||||
The number of nearest neighbors to search for.
|
||||
|
||||
Returns
|
||||
-------
|
||||
k_indices : NDArray, shape (k,)
|
||||
The indices of the k nearest neighbors in the point cloud.
|
||||
k_sq_dists : NDArray, shape (k,)
|
||||
The squared distances to the k nearest neighbors.
|
||||
)""")
|
||||
.def(
|
||||
"batch_nearest_neighbor_search",
|
||||
[](const KdTree<PointCloud>& kdtree, const Eigen::MatrixXd& pts) {
|
||||
std::vector<size_t> k_indices(pts.rows(), -1);
|
||||
std::vector<double> k_sq_dists(pts.rows(), std::numeric_limits<double>::max());
|
||||
for (int i = 0; i < pts.rows(); ++i) {
|
||||
const size_t found = traits::nearest_neighbor_search(kdtree, Eigen::Vector4d(pts(i, 0), pts(i, 1), pts(i, 2), 1.0), &k_indices[i], &k_sq_dists[i]);
|
||||
if (!found) {
|
||||
k_indices[i] = -1;
|
||||
k_sq_dists[i] = std::numeric_limits<double>::max();
|
||||
}
|
||||
}
|
||||
return std::make_pair(k_indices, k_sq_dists);
|
||||
},
|
||||
py::arg("pts"),
|
||||
R"""(
|
||||
Find the nearest neighbors for a batch of points.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pts : NDArray, shape (n, 3)
|
||||
The input points.
|
||||
|
||||
Returns
|
||||
-------
|
||||
k_indices : NDArray, shape (n,)
|
||||
The indices of the nearest neighbors for each input point.
|
||||
k_sq_dists : NDArray, shape (n,)
|
||||
The squared distances to the nearest neighbors for each input point.
|
||||
)""")
|
||||
.def(
|
||||
"batch_knn_search",
|
||||
[](const KdTree<PointCloud>& kdtree, const Eigen::MatrixXd& pts, int k) {
|
||||
std::vector<std::vector<size_t>> k_indices(pts.rows(), std::vector<size_t>(k, -1));
|
||||
std::vector<std::vector<double>> k_sq_dists(pts.rows(), std::vector<double>(k, std::numeric_limits<double>::max()));
|
||||
for (int i = 0; i < pts.rows(); ++i) {
|
||||
const size_t found = traits::knn_search(kdtree, Eigen::Vector4d(pts(i, 0), pts(i, 1), pts(i, 2), 1.0), k, k_indices[i].data(), k_sq_dists[i].data());
|
||||
if (found < k) {
|
||||
for (size_t j = found; j < k; ++j) {
|
||||
k_indices[i][j] = -1;
|
||||
k_sq_dists[i][j] = std::numeric_limits<double>::max();
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::make_pair(k_indices, k_sq_dists);
|
||||
},
|
||||
py::arg("pts"),
|
||||
py::arg("k"),
|
||||
R"""(
|
||||
Find the k nearest neighbors for a batch of points.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pts : NDArray, shape (n, 3)
|
||||
The input points.
|
||||
k : int
|
||||
The number of nearest neighbors to search for.
|
||||
|
||||
Returns
|
||||
-------
|
||||
k_indices : list of NDArray, shape (n,)
|
||||
The list of indices of the k nearest neighbors for each input point.
|
||||
k_sq_dists : list of NDArray, shape (n,)
|
||||
The list of squared distances to the k nearest neighbors for each input point.
|
||||
)""");
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue