fix: add max_iterations param of align in pybind interface (#52)

This commit is contained in:
Atticus Zhou 2024-05-18 22:59:13 +08:00 committed by GitHub
parent 602d03762b
commit 5c6f13cfc9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 15 additions and 4 deletions

View File

@ -39,6 +39,7 @@ struct RegistrationSetting {
double rotation_eps = 0.1 * M_PI / 180.0; ///< Rotation tolerance for convergence check [rad]
double translation_eps = 1e-3; ///< Translation tolerance for convergence check
int num_threads = 4; ///< Number of threads
int max_iterations = 20; ///< Maximum number of iterations
};
/// @brief Align point clouds

View File

@ -31,7 +31,8 @@ void define_align(py::module& m) {
double voxel_resolution,
double downsampling_resolution,
double max_correspondence_distance,
int num_threads) {
int num_threads,
int max_iterations) {
if (target_points.cols() != 3 && target_points.cols() != 4) {
std::cerr << "target_points must be Nx3 or Nx4" << std::endl;
return RegistrationResult(Eigen::Isometry3d::Identity());
@ -92,6 +93,7 @@ void define_align(py::module& m) {
py::arg("downsampling_resolution") = 0.25,
py::arg("max_correspondence_distance") = 1.0,
py::arg("num_threads") = 1,
py::arg("max_iterations") = 20,
R"pbdoc(
Align two point clouds using various ICP-like algorithms.
@ -113,7 +115,8 @@ void define_align(py::module& m) {
Maximum distance for matching points between point clouds.
num_threads : int = 1
Number of threads to use for parallel processing.
max_iterations : int = 20
Maximum number of iterations for the optimization algorithm.
Returns
-------
RegistrationResult
@ -130,7 +133,8 @@ void define_align(py::module& m) {
const Eigen::Matrix4d& init_T_target_source,
const std::string& registration_type,
double max_correspondence_distance,
int num_threads) {
int num_threads,
int max_iterations) {
RegistrationSetting setting;
if (registration_type == "ICP") {
setting.type = RegistrationSetting::ICP;
@ -157,6 +161,7 @@ void define_align(py::module& m) {
py::arg("registration_type") = "GICP",
py::arg("max_correspondence_distance") = 1.0,
py::arg("num_threads") = 1,
py::arg("max_iterations") = 20,
R"pbdoc(
Align two point clouds using specified ICP-like algorithms, utilizing point cloud and KD-tree inputs.
@ -176,7 +181,8 @@ void define_align(py::module& m) {
Maximum distance for corresponding point pairs.
num_threads : int = 1
Number of threads to use for computation.
max_iterations : int = 20
Maximum number of iterations for the optimization algorithm.
Returns
-------
RegistrationResult

View File

@ -90,6 +90,7 @@ align(const PointCloud& target, const PointCloud& source, const KdTree<PointClou
registration.rejector.max_dist_sq = setting.max_correspondence_distance * setting.max_correspondence_distance;
registration.criteria.rotation_eps = setting.rotation_eps;
registration.criteria.translation_eps = setting.translation_eps;
registration.optimizer.max_iterations = setting.max_iterations;
return registration.align(target, source, target_tree, init_T);
}
case RegistrationSetting::PLANE_ICP: {
@ -98,6 +99,7 @@ align(const PointCloud& target, const PointCloud& source, const KdTree<PointClou
registration.rejector.max_dist_sq = setting.max_correspondence_distance * setting.max_correspondence_distance;
registration.criteria.rotation_eps = setting.rotation_eps;
registration.criteria.translation_eps = setting.translation_eps;
registration.optimizer.max_iterations = setting.max_iterations;
return registration.align(target, source, target_tree, init_T);
}
case RegistrationSetting::GICP: {
@ -106,6 +108,7 @@ align(const PointCloud& target, const PointCloud& source, const KdTree<PointClou
registration.rejector.max_dist_sq = setting.max_correspondence_distance * setting.max_correspondence_distance;
registration.criteria.rotation_eps = setting.rotation_eps;
registration.criteria.translation_eps = setting.translation_eps;
registration.optimizer.max_iterations = setting.max_iterations;
return registration.align(target, source, target_tree, init_T);
}
case RegistrationSetting::VGICP: {
@ -125,6 +128,7 @@ RegistrationResult align(const GaussianVoxelMap& target, const PointCloud& sourc
registration.reduction.num_threads = setting.num_threads;
registration.criteria.rotation_eps = setting.rotation_eps;
registration.criteria.translation_eps = setting.translation_eps;
registration.optimizer.max_iterations = setting.max_iterations;
return registration.align(target, source, target, init_T);
}