mirror of https://github.com/koide3/small_gicp.git
improve batch_knn_search performance (#101)
This commit is contained in:
parent
ff63d5ef76
commit
2c5e9e6092
|
|
@ -129,7 +129,7 @@ void define_kdtree(py::module& m) {
|
|||
std::vector<size_t> k_indices(pts.rows(), -1);
|
||||
std::vector<double> k_sq_dists(pts.rows(), std::numeric_limits<double>::max());
|
||||
|
||||
#pragma omp parallel for num_threads(num_threads)
|
||||
#pragma omp parallel for num_threads(num_threads) schedule(guided, 4)
|
||||
for (int i = 0; i < pts.rows(); ++i) {
|
||||
const size_t found = traits::nearest_neighbor_search(kdtree, Eigen::Vector4d(pts(i, 0), pts(i, 1), pts(i, 2), 1.0), &k_indices[i], &k_sq_dists[i]);
|
||||
if (!found) {
|
||||
|
|
@ -154,9 +154,9 @@ void define_kdtree(py::module& m) {
|
|||
|
||||
Returns
|
||||
-------
|
||||
k_indices : numpy.ndarray, shape (n,)
|
||||
k_indices : numpy.ndarray, shape (n, k)
|
||||
The indices of the nearest neighbors for each input point. If a neighbor was not found, the index is -1.
|
||||
k_sq_dists : numpy.ndarray, shape (n,)
|
||||
k_sq_dists : numpy.ndarray, shape (n, k)
|
||||
The squared distances to the nearest neighbors for each input point.
|
||||
)""")
|
||||
|
||||
|
|
@ -167,16 +167,21 @@ void define_kdtree(py::module& m) {
|
|||
throw std::invalid_argument("pts must have shape (n, 3) or (n, 4)");
|
||||
}
|
||||
|
||||
std::vector<std::vector<size_t>> k_indices(pts.rows(), std::vector<size_t>(k, -1));
|
||||
std::vector<std::vector<double>> k_sq_dists(pts.rows(), std::vector<double>(k, std::numeric_limits<double>::max()));
|
||||
Eigen::Matrix<size_t, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> k_indices(pts.rows(), k);
|
||||
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> k_sq_dists(pts.rows(), k);
|
||||
k_indices.setConstant(-1);
|
||||
k_sq_dists.setConstant(std::numeric_limits<double>::max());
|
||||
|
||||
#pragma omp parallel for num_threads(num_threads)
|
||||
#pragma omp parallel for num_threads(num_threads) schedule(guided, 4)
|
||||
for (int i = 0; i < pts.rows(); ++i) {
|
||||
const size_t found = traits::knn_search(kdtree, Eigen::Vector4d(pts(i, 0), pts(i, 1), pts(i, 2), 1.0), k, k_indices[i].data(), k_sq_dists[i].data());
|
||||
size_t* k_indices_begin = k_indices.data() + i * k;
|
||||
double* k_sq_dists_begin = k_sq_dists.data() + i * k;
|
||||
|
||||
const size_t found = traits::knn_search(kdtree, Eigen::Vector4d(pts(i, 0), pts(i, 1), pts(i, 2), 1.0), k, k_indices_begin, k_sq_dists_begin);
|
||||
if (found < k) {
|
||||
for (size_t j = found; j < k; ++j) {
|
||||
k_indices[i][j] = -1;
|
||||
k_sq_dists[i][j] = std::numeric_limits<double>::max();
|
||||
k_indices_begin[j] = -1;
|
||||
k_sq_dists_begin[j] = std::numeric_limits<double>::max();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue