mirror of https://github.com/koide3/small_gicp.git
update README
This commit is contained in:
parent
052ecbae17
commit
182cae1379
50
README.md
50
README.md
|
|
@ -254,6 +254,7 @@ Example A : Perform registration with numpy arrays
|
|||
|
||||
```python
|
||||
# Align two point clouds using various ICP-like algorithms.
|
||||
#
|
||||
# Parameters
|
||||
# ----------
|
||||
# target_points : NDArray[np.float64]
|
||||
|
|
@ -272,6 +273,7 @@ Example A : Perform registration with numpy arrays
|
|||
# Maximum distance for matching points between point clouds.
|
||||
# num_threads : int = 1
|
||||
# Number of threads to use for parallel processing.
|
||||
#
|
||||
# Returns
|
||||
# -------
|
||||
# RegistrationResult
|
||||
|
|
@ -291,6 +293,7 @@ Example B : Perform preprocessing and registration separately
|
|||
|
||||
```python
|
||||
# Preprocess point cloud (downsampling, kdtree construction, and normal/covariance estimation)
|
||||
#
|
||||
# Parameters
|
||||
# ----------
|
||||
# points : NDArray[np.float64]
|
||||
|
|
@ -301,6 +304,7 @@ Example B : Perform preprocessing and registration separately
|
|||
# Number of neighbor points to usefor point normal/covariance estimation.
|
||||
# num_threads : int = 1
|
||||
# Number of threads to use for parallel processing.
|
||||
#
|
||||
# Returns
|
||||
# -------
|
||||
# PointCloud
|
||||
|
|
@ -316,29 +320,29 @@ target.points() # Nx4 numpy array [x, y, z, 1] x N
|
|||
target.normals() # Nx4 numpy array [nx, ny, nz, 0] x N
|
||||
target.covs() # Array of 4x4 covariance matrices
|
||||
|
||||
# Align two point clouds using various ICP-like algorithms.
|
||||
# Parameters
|
||||
# ----------
|
||||
# target : PointCloud
|
||||
# Target point cloud.
|
||||
# source : PointCloud
|
||||
# Source point cloud
|
||||
# target_tree : PointCloud
|
||||
# KdTree for the target point cloud (optional).
|
||||
# init_T_target_source : np.ndarray[np.float64]
|
||||
# 4x4 matrix representing the initial transformation from target to source.
|
||||
# registration_type : str = 'GICP'
|
||||
# Type of registration algorithm to use ('ICP', 'PLANE_ICP', 'GICP', 'VGICP').
|
||||
# downsampling_resolution : float = 0.25
|
||||
# Resolution for downsampling the point clouds.
|
||||
# max_correspondence_distance : float = 1.0
|
||||
# Maximum distance for matching points between point clouds.
|
||||
# num_threads : int = 1
|
||||
# Number of threads to use for parallel processing.
|
||||
# Returns
|
||||
# -------
|
||||
# RegistrationResult
|
||||
# Object containing the final transformation matrix and convergence status.
|
||||
# Align two point clouds using specified ICP-like algorithms, utilizing point cloud and KD-tree inputs.
|
||||
#
|
||||
# Parameters
|
||||
# ----------
|
||||
# target : PointCloud::ConstPtr
|
||||
# Pointer to the target point cloud.
|
||||
# source : PointCloud::ConstPtr
|
||||
# Pointer to the source point cloud.
|
||||
# target_tree : KdTree<PointCloud>::ConstPtr, optional
|
||||
# Pointer to the KD-tree of the target for nearest neighbor search. If nullptr, a new tree is built.
|
||||
# init_T_target_source : NDArray[np.float64]
|
||||
# 4x4 matrix representing the initial transformation from target to source.
|
||||
# registration_type : str = 'GICP'
|
||||
# Type of registration algorithm to use ('ICP', 'PLANE_ICP', 'GICP').
|
||||
# max_correspondence_distance : float = 1.0
|
||||
# Maximum distance for corresponding point pairs.
|
||||
# num_threads : int = 1
|
||||
# Number of threads to use for computation.
|
||||
#
|
||||
# Returns
|
||||
# -------
|
||||
# RegistrationResult
|
||||
# Object containing the final transformation matrix and convergence status.
|
||||
result = small_gicp.align(target, source, target_tree)
|
||||
```
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue