mirror of https://github.com/koide3/small_gicp.git
fix: make pybind_align to fit c++ interface and add numpy doc for align functions (#47)
This commit is contained in:
parent
24083cc9ef
commit
170121470b
|
|
@ -30,7 +30,7 @@ void define_align(py::module& m) {
|
|||
const std::string& registration_type,
|
||||
double voxel_resolution,
|
||||
double downsampling_resolution,
|
||||
double max_corresponding_distance,
|
||||
double max_correspondence_distance,
|
||||
int num_threads) {
|
||||
if (target_points.cols() != 3 && target_points.cols() != 4) {
|
||||
std::cerr << "target_points must be Nx3 or Nx4" << std::endl;
|
||||
|
|
@ -57,7 +57,7 @@ void define_align(py::module& m) {
|
|||
|
||||
setting.voxel_resolution = voxel_resolution;
|
||||
setting.downsampling_resolution = downsampling_resolution;
|
||||
setting.max_correspondence_distance = max_corresponding_distance;
|
||||
setting.max_correspondence_distance = max_correspondence_distance;
|
||||
setting.num_threads = num_threads;
|
||||
|
||||
std::vector<Eigen::Vector4d> target(target_points.rows());
|
||||
|
|
@ -90,8 +90,35 @@ void define_align(py::module& m) {
|
|||
py::arg("registration_type") = "GICP",
|
||||
py::arg("voxel_resolution") = 1.0,
|
||||
py::arg("downsampling_resolution") = 0.25,
|
||||
py::arg("max_corresponding_distance") = 1.0,
|
||||
py::arg("num_threads") = 1);
|
||||
py::arg("max_correspondence_distance") = 1.0,
|
||||
py::arg("num_threads") = 1,
|
||||
R"pbdoc(
|
||||
Align two point clouds using various ICP-like algorithms.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
target_points : NDArray[np.float64]
|
||||
Nx3 or Nx4 matrix representing the target point cloud.
|
||||
source_points : NDArray[np.float64]
|
||||
Nx3 or Nx4 matrix representing the source point cloud.
|
||||
init_T_target_source : np.ndarray[np.float64]
|
||||
4x4 matrix representing the initial transformation from target to source.
|
||||
registration_type : str = 'GICP'
|
||||
Type of registration algorithm to use ('ICP', 'PLANE_ICP', 'GICP', 'VGICP').
|
||||
voxel_resolution : float = 1.0
|
||||
Resolution of voxels used for downsampling.
|
||||
downsampling_resolution : float = 0.25
|
||||
Resolution for downsampling the point clouds.
|
||||
max_correspondence_distance : float = 1.0
|
||||
Maximum distance for matching points between point clouds.
|
||||
num_threads : int = 1
|
||||
Number of threads to use for parallel processing.
|
||||
|
||||
Returns
|
||||
-------
|
||||
RegistrationResult
|
||||
Object containing the final transformation matrix and convergence status.
|
||||
)pbdoc");
|
||||
|
||||
// align
|
||||
m.def(
|
||||
|
|
@ -101,26 +128,60 @@ void define_align(py::module& m) {
|
|||
const PointCloud::ConstPtr& source,
|
||||
KdTree<PointCloud>::ConstPtr target_tree,
|
||||
const Eigen::Matrix4d& init_T_target_source,
|
||||
const std::string& registration_type,
|
||||
double max_correspondence_distance,
|
||||
int num_threads,
|
||||
int max_iterations) {
|
||||
Registration<GICPFactor, ParallelReductionOMP> registration;
|
||||
registration.rejector.max_dist_sq = max_correspondence_distance * max_correspondence_distance;
|
||||
registration.reduction.num_threads = num_threads;
|
||||
registration.optimizer.max_iterations = max_iterations;
|
||||
int num_threads) {
|
||||
RegistrationSetting setting;
|
||||
if (registration_type == "ICP") {
|
||||
setting.type = RegistrationSetting::ICP;
|
||||
} else if (registration_type == "PLANE_ICP") {
|
||||
setting.type = RegistrationSetting::PLANE_ICP;
|
||||
} else if (registration_type == "GICP") {
|
||||
setting.type = RegistrationSetting::GICP;
|
||||
} else {
|
||||
std::cerr << "invalid registration type:" << registration_type << std::endl;
|
||||
return RegistrationResult(Eigen::Isometry3d::Identity());
|
||||
}
|
||||
setting.max_correspondence_distance = max_correspondence_distance;
|
||||
setting.num_threads = num_threads;
|
||||
|
||||
if (target_tree == nullptr) {
|
||||
target_tree = std::make_shared<KdTree<PointCloud>>(target, KdTreeBuilderOMP(num_threads));
|
||||
}
|
||||
return registration.align(*target, *source, *target_tree, Eigen::Isometry3d(init_T_target_source));
|
||||
return align(*target, *source, *target_tree, Eigen::Isometry3d(init_T_target_source), setting);
|
||||
},
|
||||
py::arg("target"),
|
||||
py::arg("source"),
|
||||
py::arg("target_tree") = nullptr,
|
||||
py::arg("init_T_target_source") = Eigen::Matrix4d::Identity(),
|
||||
py::arg("registration_type") = "GICP",
|
||||
py::arg("max_correspondence_distance") = 1.0,
|
||||
py::arg("num_threads") = 1,
|
||||
py::arg("max_iterations") = 20);
|
||||
R"pbdoc(
|
||||
Align two point clouds using specified ICP-like algorithms, utilizing point cloud and KD-tree inputs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
target : PointCloud::ConstPtr
|
||||
Pointer to the target point cloud.
|
||||
source : PointCloud::ConstPtr
|
||||
Pointer to the source point cloud.
|
||||
target_tree : KdTree<PointCloud>::ConstPtr, optional
|
||||
Pointer to the KD-tree of the target for nearest neighbor search. If nullptr, a new tree is built.
|
||||
init_T_target_source : NDArray[np.float64]
|
||||
4x4 matrix representing the initial transformation from target to source.
|
||||
registration_type : str = 'GICP'
|
||||
Type of registration algorithm to use ('ICP', 'PLANE_ICP', 'GICP').
|
||||
max_corresponding_distance : float = 1.0
|
||||
Maximum distance for corresponding point pairs.
|
||||
num_threads : int = 1
|
||||
Number of threads to use for computation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
RegistrationResult
|
||||
Object containing the final transformation matrix and convergence status.
|
||||
)pbdoc");
|
||||
|
||||
// align
|
||||
m.def(
|
||||
|
|
@ -144,5 +205,28 @@ void define_align(py::module& m) {
|
|||
py::arg("init_T_target_source") = Eigen::Matrix4d::Identity(),
|
||||
py::arg("max_correspondence_distance") = 1.0,
|
||||
py::arg("num_threads") = 1,
|
||||
py::arg("max_iterations") = 20);
|
||||
}
|
||||
py::arg("max_iterations") = 20,
|
||||
R"pbdoc(
|
||||
Align two point clouds using voxel-based GICP algorithm, utilizing a Gaussian Voxel Map.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
target_voxelmap : GaussianVoxelMap
|
||||
Voxel map constructed from the target point cloud.
|
||||
source : PointCloud
|
||||
Source point cloud to align to the target.
|
||||
init_T_target_source : NDArray[np.float64]
|
||||
4x4 matrix representing the initial transformation from target to source.
|
||||
max_correspondence_distance : float = 1.0
|
||||
Maximum distance for corresponding point pairs.
|
||||
num_threads : int = 1
|
||||
Number of threads to use for computation.
|
||||
max_iterations : int = 20
|
||||
Maximum number of iterations for the optimization algorithm.
|
||||
|
||||
Returns
|
||||
-------
|
||||
RegistrationResult
|
||||
Object containing the final transformation matrix and convergence status.
|
||||
)pbdoc");
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue