mirror of https://github.com/koide3/small_gicp.git
parent
76142deb81
commit
1183e3d39a
|
|
@ -425,7 +425,7 @@ Processing speed comparison between small_gicp and Open3D ([youtube]((https://yo
|
|||
|
||||
- Single-thread `small_gicp::GICP` is about **2.4x and 1.9x faster** than `pcl::GICP` and `fast_gicp::GICP`, respectively.
|
||||
- `small_gicp::(GICP|VGICP)` shows a better multi-thread scalability compared to `fast_gicp::(GICP|VGICP)`.
|
||||
- `small_gicp::GICP` parallelized with [TBB flow graph](src/odometry_benchmark_small_gicp_tbb_flow.cpp) shows an excellent scalability to many-threads situations (**~128 threads**) but with latency degradation.
|
||||
- `small_gicp::GICP` parallelized with [TBB flow graph](src/benchmark/odometry_benchmark_small_gicp_tbb_flow.cpp) shows an excellent scalability to many-threads situations (**~128 threads**) but with latency degradation.
|
||||
- Outputs of `small_gicp::GICP` are almost identical to those of `fast_gicp::GICP`.
|
||||
|
||||

|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -1,105 +0,0 @@
|
|||
// SPDX-FileCopyrightText: Copyright 2024 Kenji Koide
|
||||
// SPDX-License-Identifier: MIT
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <Eigen/Core>
|
||||
#include <small_gicp/points/traits.hpp>
|
||||
#include <small_gicp/ann/traits.hpp>
|
||||
#include <small_gicp/ann/nanoflann.hpp>
|
||||
|
||||
namespace small_gicp {
|
||||
|
||||
/// @brief Unsafe KdTree with arbitrary nanoflann Adaptor.
|
||||
/// @note This class does not hold the ownership of the input points.
|
||||
/// You must keep the input points along with this class.
|
||||
template <class PointCloud, template <typename, typename, int, typename> class Adaptor>
|
||||
class UnsafeKdTreeGeneric {
|
||||
public:
|
||||
using Ptr = std::shared_ptr<UnsafeKdTreeGeneric>;
|
||||
using ConstPtr = std::shared_ptr<const UnsafeKdTreeGeneric>;
|
||||
using ThisClass = UnsafeKdTreeGeneric<PointCloud, Adaptor>;
|
||||
using Index = Adaptor<nanoflann::L2_Simple_Adaptor<double, ThisClass, double>, ThisClass, 3, size_t>;
|
||||
|
||||
/// @brief Constructor
|
||||
/// @param points Input points
|
||||
explicit UnsafeKdTreeGeneric(const PointCloud& points) : points(points), index(3, *this, nanoflann::KDTreeSingleIndexAdaptorParams(10)) { index.buildIndex(); }
|
||||
|
||||
/// @brief Constructor
|
||||
/// @param points Input points
|
||||
/// @params num_threads Number of threads used for building the index (This argument is only valid for OMP implementation)
|
||||
explicit UnsafeKdTreeGeneric(const PointCloud& points, int num_threads) : points(points), index(3, *this, nanoflann::KDTreeSingleIndexAdaptorParams(10)) {
|
||||
index.buildIndex(num_threads);
|
||||
}
|
||||
|
||||
~UnsafeKdTreeGeneric() {}
|
||||
|
||||
// Interfaces for nanoflann
|
||||
size_t kdtree_get_point_count() const { return traits::size(points); }
|
||||
double kdtree_get_pt(const size_t idx, const size_t dim) const { return traits::point(points, idx)[dim]; }
|
||||
|
||||
template <class BBox>
|
||||
bool kdtree_get_bbox(BBox&) const {
|
||||
return false;
|
||||
}
|
||||
|
||||
/// @brief Find k-nearest neighbors
|
||||
size_t knn_search(const Eigen::Vector4d& pt, size_t k, size_t* k_indices, double* k_sq_dists) const { return index.knnSearch(pt.data(), k, k_indices, k_sq_dists); }
|
||||
|
||||
private:
|
||||
const PointCloud& points; ///< Input points
|
||||
Index index; ///< KdTree index
|
||||
};
|
||||
|
||||
/// @brief KdTree with arbitrary nanoflann Adaptor
|
||||
template <class PointCloud, template <typename, typename, int, typename> class Adaptor>
|
||||
class KdTreeGeneric {
|
||||
public:
|
||||
using Ptr = std::shared_ptr<KdTreeGeneric>;
|
||||
using ConstPtr = std::shared_ptr<const KdTreeGeneric>;
|
||||
|
||||
/// @brief Constructor
|
||||
/// @param points Input points
|
||||
explicit KdTreeGeneric(const std::shared_ptr<const PointCloud>& points) : points(points), tree(*points) {}
|
||||
|
||||
/// @brief Constructor
|
||||
/// @param points Input points
|
||||
explicit KdTreeGeneric(const std::shared_ptr<const PointCloud>& points, int num_threads) : points(points), tree(*points, num_threads) {}
|
||||
|
||||
~KdTreeGeneric() {}
|
||||
|
||||
/// @brief Find k-nearest neighbors
|
||||
size_t knn_search(const Eigen::Vector4d& pt, size_t k, size_t* k_indices, double* k_sq_dists) const { return tree.knn_search(pt, k, k_indices, k_sq_dists); }
|
||||
|
||||
private:
|
||||
const std::shared_ptr<const PointCloud> points; ///< Input points
|
||||
const UnsafeKdTreeGeneric<PointCloud, Adaptor> tree; ///< KdTree
|
||||
};
|
||||
|
||||
/// @brief Standard KdTree (unsafe)
|
||||
template <class PointCloud>
|
||||
using UnsafeKdTree = UnsafeKdTreeGeneric<PointCloud, nanoflann::KDTreeSingleIndexAdaptor>;
|
||||
|
||||
/// @brief Standard KdTree
|
||||
template <class PointCloud>
|
||||
using KdTree = KdTreeGeneric<PointCloud, nanoflann::KDTreeSingleIndexAdaptor>;
|
||||
|
||||
namespace traits {
|
||||
|
||||
template <class PointCloud, template <typename, typename, int, typename> class Adaptor>
|
||||
struct Traits<UnsafeKdTreeGeneric<PointCloud, Adaptor>> {
|
||||
static size_t knn_search(const UnsafeKdTreeGeneric<PointCloud, Adaptor>& tree, const Eigen::Vector4d& point, size_t k, size_t* k_indices, double* k_sq_dists) {
|
||||
return tree.knn_search(point, k, k_indices, k_sq_dists);
|
||||
}
|
||||
};
|
||||
|
||||
template <class PointCloud, template <typename, typename, int, typename> class Adaptor>
|
||||
struct Traits<KdTreeGeneric<PointCloud, Adaptor>> {
|
||||
static size_t knn_search(const KdTreeGeneric<PointCloud, Adaptor>& tree, const Eigen::Vector4d& point, size_t k, size_t* k_indices, double* k_sq_dists) {
|
||||
return tree.knn_search(point, k, k_indices, k_sq_dists);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace traits
|
||||
|
||||
} // namespace small_gicp
|
||||
|
|
@ -1,22 +0,0 @@
|
|||
// SPDX-FileCopyrightText: Copyright 2024 Kenji Koide
|
||||
// SPDX-License-Identifier: MIT
|
||||
#pragma once
|
||||
|
||||
#include <Eigen/Core>
|
||||
#include <small_gicp/points/traits.hpp>
|
||||
#include <small_gicp/ann/kdtree.hpp>
|
||||
#include <small_gicp/ann/nanoflann_omp.hpp>
|
||||
|
||||
namespace small_gicp {
|
||||
|
||||
/// @brief Unsafe KdTree with multi-thread tree construction with OpenMP backend.
|
||||
/// @note This class only parallelizes the tree construction. The search is still single-threaded as in the normal KdTree.
|
||||
template <class PointCloud>
|
||||
using UnsafeKdTreeOMP = UnsafeKdTreeGeneric<PointCloud, nanoflann::KDTreeSingleIndexAdaptorOMP>;
|
||||
|
||||
/// @brief KdTree with multi-thread tree construction with OpenMP backend.
|
||||
/// @note This class only parallelizes the tree construction. The search is still single-threaded as in the normal KdTree.
|
||||
template <class PointCloud>
|
||||
using KdTreeOMP = KdTreeGeneric<PointCloud, nanoflann::KDTreeSingleIndexAdaptorOMP>;
|
||||
|
||||
} // namespace small_gicp
|
||||
|
|
@ -1,22 +0,0 @@
|
|||
// SPDX-FileCopyrightText: Copyright 2024 Kenji Koide
|
||||
// SPDX-License-Identifier: MIT
|
||||
#pragma once
|
||||
|
||||
#include <Eigen/Core>
|
||||
#include <small_gicp/points/traits.hpp>
|
||||
#include <small_gicp/ann/kdtree.hpp>
|
||||
#include <small_gicp/ann/nanoflann_tbb.hpp>
|
||||
|
||||
namespace small_gicp {
|
||||
|
||||
/// @brief Unsafe KdTree with multi-thread tree construction with TBB backend.
|
||||
/// @note This class only parallelizes the tree construction. The search is still single-threaded as in the normal KdTree.
|
||||
template <class PointCloud>
|
||||
using UnsafeKdTreeTBB = UnsafeKdTreeGeneric<PointCloud, nanoflann::KDTreeSingleIndexAdaptorTBB>;
|
||||
|
||||
/// @brief KdTree with multi-thread tree construction with TBB backend.
|
||||
/// @note This class only parallelizes the tree construction. The search is still single-threaded as in the normal KdTree.
|
||||
template <class PointCloud>
|
||||
using KdTreeTBB = KdTreeGeneric<PointCloud, nanoflann::KDTreeSingleIndexAdaptorTBB>;
|
||||
|
||||
} // namespace small_gicp
|
||||
File diff suppressed because it is too large
Load Diff
|
|
@ -1,657 +0,0 @@
|
|||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2011-2021 Jose Luis Blanco (joseluisblancoc@gmail.com).
|
||||
* All rights reserved.
|
||||
*
|
||||
* THE BSD LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
/**
|
||||
* This nanoflann_mt.hpp is derived from nanoflann.hpp to parallelize the tree construction with OpenMP.
|
||||
*/
|
||||
|
||||
/** \mainpage nanoflann C++ API documentation
|
||||
* nanoflann is a C++ header-only library for building KD-Trees, mostly
|
||||
* optimized for 2D or 3D point clouds.
|
||||
*
|
||||
* nanoflann does not require compiling or installing, just an
|
||||
* #include <nanoflann.hpp> in your code.
|
||||
*
|
||||
* See:
|
||||
* - <a href="modules.html" >C++ API organized by modules</a>
|
||||
* - <a href="https://github.com/jlblancoc/nanoflann" >Online README</a>
|
||||
* - <a href="http://jlblancoc.github.io/nanoflann/" >Doxygen
|
||||
* documentation</a>
|
||||
*/
|
||||
|
||||
#ifndef NANOFLANN_OMP_HPP_
|
||||
#define NANOFLANN_OMP_HPP_
|
||||
|
||||
#include <atomic>
|
||||
#include <iostream>
|
||||
#include <small_gicp/ann/nanoflann.hpp>
|
||||
|
||||
namespace nanoflann {
|
||||
|
||||
/** kd-tree base-class
|
||||
*
|
||||
* Contains the member functions common to the classes KDTreeSingleIndexAdaptor
|
||||
* and KDTreeSingleIndexDynamicAdaptor_.
|
||||
*
|
||||
* \tparam Derived The name of the class which inherits this class.
|
||||
* \tparam DatasetAdaptor The user-provided adaptor (see comments above).
|
||||
* \tparam Distance The distance metric to use, these are all classes derived
|
||||
* from nanoflann::Metric \tparam DIM Dimensionality of data points (e.g. 3 for
|
||||
* 3D points) \tparam IndexType Will be typically size_t or int
|
||||
*/
|
||||
|
||||
template <class Derived, typename Distance, class DatasetAdaptor, int DIM = -1, typename IndexType = size_t>
|
||||
class KDTreeBaseClassOMP {
|
||||
public:
|
||||
/** Frees the previously-built index. Automatically called within
|
||||
* buildIndex(). */
|
||||
void freeIndex(Derived& obj) {
|
||||
obj.root_node = NULL;
|
||||
obj.m_size_at_index_build = 0;
|
||||
}
|
||||
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::DistanceType DistanceType;
|
||||
|
||||
/*--------------------- Internal Data Structures --------------------------*/
|
||||
struct Node {
|
||||
/** Union used because a node can be either a LEAF node or a non-leaf node,
|
||||
* so both data fields are never used simultaneously */
|
||||
union {
|
||||
struct leaf {
|
||||
IndexType left, right; //!< Indices of points in leaf node
|
||||
} lr;
|
||||
struct nonleaf {
|
||||
int divfeat; //!< Dimension used for subdivision.
|
||||
DistanceType divlow, divhigh; //!< The values used for subdivision.
|
||||
} sub;
|
||||
} node_type;
|
||||
Node *child1, *child2; //!< Child nodes (both=NULL mean its a leaf node)
|
||||
};
|
||||
|
||||
typedef Node* NodePtr;
|
||||
|
||||
struct Interval {
|
||||
ElementType low, high;
|
||||
};
|
||||
|
||||
/**
|
||||
* Array of indices to vectors in the dataset.
|
||||
*/
|
||||
std::vector<IndexType> vind;
|
||||
|
||||
NodePtr root_node;
|
||||
|
||||
size_t m_leaf_max_size;
|
||||
|
||||
size_t m_size; //!< Number of current points in the dataset
|
||||
size_t m_size_at_index_build; //!< Number of points in the dataset when the
|
||||
//!< index was built
|
||||
int dim; //!< Dimensionality of each data point
|
||||
|
||||
/** Define "BoundingBox" as a fixed-size or variable-size container depending
|
||||
* on "DIM" */
|
||||
typedef typename array_or_vector_selector<DIM, Interval>::container_t BoundingBox;
|
||||
|
||||
/** Define "distance_vector_t" as a fixed-size or variable-size container
|
||||
* depending on "DIM" */
|
||||
typedef typename array_or_vector_selector<DIM, DistanceType>::container_t distance_vector_t;
|
||||
|
||||
/** The KD-tree used to find neighbours */
|
||||
|
||||
BoundingBox root_bbox;
|
||||
|
||||
/**
|
||||
* Pooled memory allocator.
|
||||
*
|
||||
* Using a pooled memory allocator is more efficient
|
||||
* than allocating memory directly when there is a large
|
||||
* number small of memory allocations.
|
||||
*/
|
||||
std::atomic_uint64_t pool_count;
|
||||
std::vector<Node> pool;
|
||||
|
||||
/** Returns number of points in dataset */
|
||||
size_t size(const Derived& obj) const { return obj.m_size; }
|
||||
|
||||
/** Returns the length of each point in the dataset */
|
||||
size_t veclen(const Derived& obj) { return static_cast<size_t>(DIM > 0 ? DIM : obj.dim); }
|
||||
|
||||
/// Helper accessor to the dataset points:
|
||||
inline ElementType dataset_get(const Derived& obj, size_t idx, int component) const { return obj.dataset.kdtree_get_pt(idx, component); }
|
||||
|
||||
void computeMinMax(const Derived& obj, IndexType* ind, IndexType count, int element, ElementType& min_elem, ElementType& max_elem) {
|
||||
min_elem = dataset_get(obj, ind[0], element);
|
||||
max_elem = dataset_get(obj, ind[0], element);
|
||||
for (IndexType i = 1; i < count; ++i) {
|
||||
ElementType val = dataset_get(obj, ind[i], element);
|
||||
if (val < min_elem) min_elem = val;
|
||||
if (val > max_elem) max_elem = val;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a tree node that subdivides the list of vecs from vind[first]
|
||||
* to vind[last]. The routine is called recursively on each sublist.
|
||||
*
|
||||
* @param left index of the first vector
|
||||
* @param right index of the last vector
|
||||
*/
|
||||
NodePtr divideTree(Derived& obj, const IndexType left, const IndexType right, BoundingBox& bbox) {
|
||||
const size_t pool_loc = pool_count++;
|
||||
if (pool_loc >= pool.size()) {
|
||||
std::cerr << "error: pool_loc=" << pool_loc << " >= pool.size()=" << pool.size() << std::endl;
|
||||
abort();
|
||||
}
|
||||
NodePtr node = pool.data() + pool_loc;
|
||||
|
||||
/* If too few exemplars remain, then make this a leaf node. */
|
||||
if ((right - left) <= static_cast<IndexType>(obj.m_leaf_max_size)) {
|
||||
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
|
||||
node->node_type.lr.left = left;
|
||||
node->node_type.lr.right = right;
|
||||
|
||||
// compute bounding-box of leaf points
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
bbox[i].low = dataset_get(obj, obj.vind[left], i);
|
||||
bbox[i].high = dataset_get(obj, obj.vind[left], i);
|
||||
}
|
||||
for (IndexType k = left + 1; k < right; ++k) {
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
if (bbox[i].low > dataset_get(obj, obj.vind[k], i)) bbox[i].low = dataset_get(obj, obj.vind[k], i);
|
||||
if (bbox[i].high < dataset_get(obj, obj.vind[k], i)) bbox[i].high = dataset_get(obj, obj.vind[k], i);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
IndexType idx;
|
||||
int cutfeat;
|
||||
DistanceType cutval;
|
||||
middleSplit_(obj, &obj.vind[0] + left, right - left, idx, cutfeat, cutval, bbox);
|
||||
|
||||
node->node_type.sub.divfeat = cutfeat;
|
||||
|
||||
BoundingBox left_bbox(bbox);
|
||||
left_bbox[cutfeat].high = cutval;
|
||||
|
||||
BoundingBox right_bbox(bbox);
|
||||
right_bbox[cutfeat].low = cutval;
|
||||
|
||||
if ((right - left) <= 512) {
|
||||
// Do not parallelize if there are less than 512 points
|
||||
node->child1 = divideTree(obj, left, left + idx, left_bbox);
|
||||
node->child2 = divideTree(obj, left + idx, right, right_bbox);
|
||||
} else {
|
||||
// I did my best to check that the following parallelization does not cause race conditions.
|
||||
// But, still not 100% sure if it is correct.
|
||||
|
||||
#pragma omp task shared(obj, left_bbox)
|
||||
node->child1 = divideTree(obj, left, left + idx, left_bbox);
|
||||
#pragma omp task shared(obj, right_bbox)
|
||||
node->child2 = divideTree(obj, left + idx, right, right_bbox);
|
||||
#pragma omp taskwait
|
||||
}
|
||||
|
||||
node->node_type.sub.divlow = left_bbox[cutfeat].high;
|
||||
node->node_type.sub.divhigh = right_bbox[cutfeat].low;
|
||||
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
|
||||
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
|
||||
}
|
||||
}
|
||||
|
||||
return node;
|
||||
}
|
||||
|
||||
void middleSplit_(Derived& obj, IndexType* ind, IndexType count, IndexType& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox) {
|
||||
const DistanceType EPS = static_cast<DistanceType>(0.00001);
|
||||
ElementType max_span = bbox[0].high - bbox[0].low;
|
||||
for (int i = 1; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
ElementType span = bbox[i].high - bbox[i].low;
|
||||
if (span > max_span) {
|
||||
max_span = span;
|
||||
}
|
||||
}
|
||||
ElementType max_spread = -1;
|
||||
cutfeat = 0;
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
ElementType span = bbox[i].high - bbox[i].low;
|
||||
if (span > (1 - EPS) * max_span) {
|
||||
ElementType min_elem, max_elem;
|
||||
computeMinMax(obj, ind, count, i, min_elem, max_elem);
|
||||
ElementType spread = max_elem - min_elem;
|
||||
if (spread > max_spread) {
|
||||
cutfeat = i;
|
||||
max_spread = spread;
|
||||
}
|
||||
}
|
||||
}
|
||||
// split in the middle
|
||||
DistanceType split_val = (bbox[cutfeat].low + bbox[cutfeat].high) / 2;
|
||||
ElementType min_elem, max_elem;
|
||||
computeMinMax(obj, ind, count, cutfeat, min_elem, max_elem);
|
||||
|
||||
if (split_val < min_elem)
|
||||
cutval = min_elem;
|
||||
else if (split_val > max_elem)
|
||||
cutval = max_elem;
|
||||
else
|
||||
cutval = split_val;
|
||||
|
||||
IndexType lim1, lim2;
|
||||
planeSplit(obj, ind, count, cutfeat, cutval, lim1, lim2);
|
||||
|
||||
if (lim1 > count / 2)
|
||||
index = lim1;
|
||||
else if (lim2 < count / 2)
|
||||
index = lim2;
|
||||
else
|
||||
index = count / 2;
|
||||
}
|
||||
|
||||
/**
|
||||
* Subdivide the list of points by a plane perpendicular on axe corresponding
|
||||
* to the 'cutfeat' dimension at 'cutval' position.
|
||||
*
|
||||
* On return:
|
||||
* dataset[ind[0..lim1-1]][cutfeat]<cutval
|
||||
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval
|
||||
* dataset[ind[lim2..count]][cutfeat]>cutval
|
||||
*/
|
||||
void planeSplit(Derived& obj, IndexType* ind, const IndexType count, int cutfeat, DistanceType& cutval, IndexType& lim1, IndexType& lim2) {
|
||||
/* Move vector indices for left subtree to front of list. */
|
||||
IndexType left = 0;
|
||||
IndexType right = count - 1;
|
||||
for (;;) {
|
||||
while (left <= right && dataset_get(obj, ind[left], cutfeat) < cutval) ++left;
|
||||
while (right && left <= right && dataset_get(obj, ind[right], cutfeat) >= cutval) --right;
|
||||
if (left > right || !right) break; // "!right" was added to support unsigned Index types
|
||||
std::swap(ind[left], ind[right]);
|
||||
++left;
|
||||
--right;
|
||||
}
|
||||
/* If either list is empty, it means that all remaining features
|
||||
* are identical. Split in the middle to maintain a balanced tree.
|
||||
*/
|
||||
lim1 = left;
|
||||
right = count - 1;
|
||||
for (;;) {
|
||||
while (left <= right && dataset_get(obj, ind[left], cutfeat) <= cutval) ++left;
|
||||
while (right && left <= right && dataset_get(obj, ind[right], cutfeat) > cutval) --right;
|
||||
if (left > right || !right) break; // "!right" was added to support unsigned Index types
|
||||
std::swap(ind[left], ind[right]);
|
||||
++left;
|
||||
--right;
|
||||
}
|
||||
lim2 = left;
|
||||
}
|
||||
|
||||
DistanceType computeInitialDistances(const Derived& obj, const ElementType* vec, distance_vector_t& dists) const {
|
||||
assert(vec);
|
||||
DistanceType distsq = DistanceType();
|
||||
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
if (vec[i] < obj.root_bbox[i].low) {
|
||||
dists[i] = obj.distance.accum_dist(vec[i], obj.root_bbox[i].low, i);
|
||||
distsq += dists[i];
|
||||
}
|
||||
if (vec[i] > obj.root_bbox[i].high) {
|
||||
dists[i] = obj.distance.accum_dist(vec[i], obj.root_bbox[i].high, i);
|
||||
distsq += dists[i];
|
||||
}
|
||||
}
|
||||
return distsq;
|
||||
}
|
||||
};
|
||||
|
||||
/** @addtogroup kdtrees_grp KD-tree classes and adaptors
|
||||
* @{ */
|
||||
|
||||
/** kd-tree static index
|
||||
*
|
||||
* Contains the k-d trees and other information for indexing a set of points
|
||||
* for nearest-neighbor matching.
|
||||
*
|
||||
* The class "DatasetAdaptor" must provide the following interface (can be
|
||||
* non-virtual, inlined methods):
|
||||
*
|
||||
* \code
|
||||
* // Must return the number of data poins
|
||||
* inline size_t kdtree_get_point_count() const { ... }
|
||||
*
|
||||
*
|
||||
* // Must return the dim'th component of the idx'th point in the class:
|
||||
* inline T kdtree_get_pt(const size_t idx, const size_t dim) const { ... }
|
||||
*
|
||||
* // Optional bounding-box computation: return false to default to a standard
|
||||
* bbox computation loop.
|
||||
* // Return true if the BBOX was already computed by the class and returned
|
||||
* in "bb" so it can be avoided to redo it again.
|
||||
* // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3
|
||||
* for point clouds) template <class BBOX> bool kdtree_get_bbox(BBOX &bb) const
|
||||
* {
|
||||
* bb[0].low = ...; bb[0].high = ...; // 0th dimension limits
|
||||
* bb[1].low = ...; bb[1].high = ...; // 1st dimension limits
|
||||
* ...
|
||||
* return true;
|
||||
* }
|
||||
*
|
||||
* \endcode
|
||||
*
|
||||
* \tparam DatasetAdaptor The user-provided adaptor (see comments above).
|
||||
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
|
||||
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. \tparam DIM
|
||||
* Dimensionality of data points (e.g. 3 for 3D points) \tparam IndexType Will
|
||||
* be typically size_t or int
|
||||
*/
|
||||
template <typename Distance, class DatasetAdaptor, int DIM = -1, typename IndexType = size_t>
|
||||
class KDTreeSingleIndexAdaptorOMP : public KDTreeBaseClassOMP<KDTreeSingleIndexAdaptorOMP<Distance, DatasetAdaptor, DIM, IndexType>, Distance, DatasetAdaptor, DIM, IndexType> {
|
||||
public:
|
||||
/** Deleted copy constructor*/
|
||||
KDTreeSingleIndexAdaptorOMP(const KDTreeSingleIndexAdaptorOMP<Distance, DatasetAdaptor, DIM, IndexType>&) = delete;
|
||||
|
||||
/**
|
||||
* The dataset used by this index
|
||||
*/
|
||||
const DatasetAdaptor& dataset; //!< The source of our data
|
||||
|
||||
const KDTreeSingleIndexAdaptorParams index_params;
|
||||
|
||||
Distance distance;
|
||||
|
||||
typedef typename nanoflann::KDTreeBaseClassOMP<nanoflann::KDTreeSingleIndexAdaptorOMP<Distance, DatasetAdaptor, DIM, IndexType>, Distance, DatasetAdaptor, DIM, IndexType>
|
||||
BaseClassRef;
|
||||
|
||||
typedef typename BaseClassRef::ElementType ElementType;
|
||||
typedef typename BaseClassRef::DistanceType DistanceType;
|
||||
|
||||
typedef typename BaseClassRef::Node Node;
|
||||
typedef Node* NodePtr;
|
||||
|
||||
typedef typename BaseClassRef::Interval Interval;
|
||||
/** Define "BoundingBox" as a fixed-size or variable-size container depending
|
||||
* on "DIM" */
|
||||
typedef typename BaseClassRef::BoundingBox BoundingBox;
|
||||
|
||||
/** Define "distance_vector_t" as a fixed-size or variable-size container
|
||||
* depending on "DIM" */
|
||||
typedef typename BaseClassRef::distance_vector_t distance_vector_t;
|
||||
|
||||
/**
|
||||
* KDTree constructor
|
||||
*
|
||||
* Refer to docs in README.md or online in
|
||||
* https://github.com/jlblancoc/nanoflann
|
||||
*
|
||||
* The KD-Tree point dimension (the length of each point in the datase, e.g. 3
|
||||
* for 3D points) is determined by means of:
|
||||
* - The \a DIM template parameter if >0 (highest priority)
|
||||
* - Otherwise, the \a dimensionality parameter of this constructor.
|
||||
*
|
||||
* @param inputData Dataset with the input features
|
||||
* @param params Basically, the maximum leaf node size
|
||||
*/
|
||||
KDTreeSingleIndexAdaptorOMP(const int dimensionality, const DatasetAdaptor& inputData, const KDTreeSingleIndexAdaptorParams& params = KDTreeSingleIndexAdaptorParams())
|
||||
: dataset(inputData),
|
||||
index_params(params),
|
||||
distance(inputData) {
|
||||
BaseClassRef::root_node = NULL;
|
||||
BaseClassRef::m_size = dataset.kdtree_get_point_count();
|
||||
BaseClassRef::m_size_at_index_build = BaseClassRef::m_size;
|
||||
BaseClassRef::dim = dimensionality;
|
||||
if (DIM > 0) BaseClassRef::dim = DIM;
|
||||
BaseClassRef::m_leaf_max_size = params.leaf_max_size;
|
||||
|
||||
// Create a permutable array of indices to the input vectors.
|
||||
init_vind();
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds the index
|
||||
*/
|
||||
void buildIndex(int num_threads) {
|
||||
BaseClassRef::m_size = dataset.kdtree_get_point_count();
|
||||
BaseClassRef::m_size_at_index_build = BaseClassRef::m_size;
|
||||
init_vind();
|
||||
this->freeIndex(*this);
|
||||
BaseClassRef::m_size_at_index_build = BaseClassRef::m_size;
|
||||
if (BaseClassRef::m_size == 0) return;
|
||||
computeBoundingBox(BaseClassRef::root_bbox);
|
||||
|
||||
BaseClassRef::pool_count = 0;
|
||||
BaseClassRef::pool.resize(BaseClassRef::m_size);
|
||||
|
||||
#pragma omp parallel num_threads(num_threads)
|
||||
{
|
||||
#pragma omp single nowait
|
||||
{
|
||||
BaseClassRef::root_node = this->divideTree(*this, 0, BaseClassRef::m_size,
|
||||
BaseClassRef::root_bbox); // construct the tree
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** \name Query methods
|
||||
* @{ */
|
||||
|
||||
/**
|
||||
* Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored
|
||||
* inside the result object.
|
||||
*
|
||||
* Params:
|
||||
* result = the result object in which the indices of the
|
||||
* nearest-neighbors are stored vec = the vector for which to search the
|
||||
* nearest neighbors
|
||||
*
|
||||
* \tparam RESULTSET Should be any ResultSet<DistanceType>
|
||||
* \return True if the requested neighbors could be found.
|
||||
* \sa knnSearch, radiusSearch
|
||||
*/
|
||||
template <typename RESULTSET>
|
||||
bool findNeighbors(RESULTSET& result, const ElementType* vec, const SearchParams& searchParams) const {
|
||||
assert(vec);
|
||||
if (this->size(*this) == 0) return false;
|
||||
if (!BaseClassRef::root_node) throw std::runtime_error("[nanoflann] findNeighbors() called before building the index.");
|
||||
float epsError = 1 + searchParams.eps;
|
||||
|
||||
distance_vector_t dists; // fixed or variable-sized container (depending on DIM)
|
||||
auto zero = static_cast<decltype(result.worstDist())>(0);
|
||||
assign(dists, (DIM > 0 ? DIM : BaseClassRef::dim),
|
||||
zero); // Fill it with zeros.
|
||||
DistanceType distsq = this->computeInitialDistances(*this, vec, dists);
|
||||
searchLevel(
|
||||
result,
|
||||
vec,
|
||||
BaseClassRef::root_node,
|
||||
distsq,
|
||||
dists,
|
||||
epsError); // "count_leaf" parameter removed since was neither
|
||||
// used nor returned to the user.
|
||||
return result.full();
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1].
|
||||
* Their indices are stored inside the result object. \sa radiusSearch,
|
||||
* findNeighbors \note nChecks_IGNORED is ignored but kept for compatibility
|
||||
* with the original FLANN interface. \return Number `N` of valid points in
|
||||
* the result set. Only the first `N` entries in `out_indices` and
|
||||
* `out_distances_sq` will be valid. Return may be less than `num_closest`
|
||||
* only if the number of elements in the tree is less than `num_closest`.
|
||||
*/
|
||||
size_t knnSearch(const ElementType* query_point, const size_t num_closest, IndexType* out_indices, DistanceType* out_distances_sq, const int /* nChecks_IGNORED */ = 10) const {
|
||||
nanoflann::KNNResultSet<DistanceType, IndexType> resultSet(num_closest);
|
||||
resultSet.init(out_indices, out_distances_sq);
|
||||
this->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
|
||||
return resultSet.size();
|
||||
}
|
||||
|
||||
/**
|
||||
* Find all the neighbors to \a query_point[0:dim-1] within a maximum radius.
|
||||
* The output is given as a vector of pairs, of which the first element is a
|
||||
* point index and the second the corresponding distance. Previous contents of
|
||||
* \a IndicesDists are cleared.
|
||||
*
|
||||
* If searchParams.sorted==true, the output list is sorted by ascending
|
||||
* distances.
|
||||
*
|
||||
* For a better performance, it is advisable to do a .reserve() on the vector
|
||||
* if you have any wild guess about the number of expected matches.
|
||||
*
|
||||
* \sa knnSearch, findNeighbors, radiusSearchCustomCallback
|
||||
* \return The number of points within the given radius (i.e. indices.size()
|
||||
* or dists.size() )
|
||||
*/
|
||||
size_t radiusSearch(const ElementType* query_point, const DistanceType& radius, std::vector<std::pair<IndexType, DistanceType>>& IndicesDists, const SearchParams& searchParams)
|
||||
const {
|
||||
RadiusResultSet<DistanceType, IndexType> resultSet(radius, IndicesDists);
|
||||
const size_t nFound = radiusSearchCustomCallback(query_point, resultSet, searchParams);
|
||||
if (searchParams.sorted) std::sort(IndicesDists.begin(), IndicesDists.end(), IndexDist_Sorter());
|
||||
return nFound;
|
||||
}
|
||||
|
||||
/**
|
||||
* Just like radiusSearch() but with a custom callback class for each point
|
||||
* found in the radius of the query. See the source of RadiusResultSet<> as a
|
||||
* start point for your own classes. \sa radiusSearch
|
||||
*/
|
||||
template <class SEARCH_CALLBACK>
|
||||
size_t radiusSearchCustomCallback(const ElementType* query_point, SEARCH_CALLBACK& resultSet, const SearchParams& searchParams = SearchParams()) const {
|
||||
this->findNeighbors(resultSet, query_point, searchParams);
|
||||
return resultSet.size();
|
||||
}
|
||||
|
||||
/** @} */
|
||||
|
||||
public:
|
||||
/** Make sure the auxiliary list \a vind has the same size than the current
|
||||
* dataset, and re-generate if size has changed. */
|
||||
void init_vind() {
|
||||
// Create a permutable array of indices to the input vectors.
|
||||
BaseClassRef::m_size = dataset.kdtree_get_point_count();
|
||||
if (BaseClassRef::vind.size() != BaseClassRef::m_size) BaseClassRef::vind.resize(BaseClassRef::m_size);
|
||||
for (size_t i = 0; i < BaseClassRef::m_size; i++) BaseClassRef::vind[i] = i;
|
||||
}
|
||||
|
||||
void computeBoundingBox(BoundingBox& bbox) {
|
||||
resize(bbox, (DIM > 0 ? DIM : BaseClassRef::dim));
|
||||
if (dataset.kdtree_get_bbox(bbox)) {
|
||||
// Done! It was implemented in derived class
|
||||
} else {
|
||||
const size_t N = dataset.kdtree_get_point_count();
|
||||
if (!N)
|
||||
throw std::runtime_error(
|
||||
"[nanoflann] computeBoundingBox() called but "
|
||||
"no data points found.");
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) {
|
||||
bbox[i].low = bbox[i].high = this->dataset_get(*this, 0, i);
|
||||
}
|
||||
for (size_t k = 1; k < N; ++k) {
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) {
|
||||
if (this->dataset_get(*this, k, i) < bbox[i].low) bbox[i].low = this->dataset_get(*this, k, i);
|
||||
if (this->dataset_get(*this, k, i) > bbox[i].high) bbox[i].high = this->dataset_get(*this, k, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs an exact search in the tree starting from a node.
|
||||
* \tparam RESULTSET Should be any ResultSet<DistanceType>
|
||||
* \return true if the search should be continued, false if the results are
|
||||
* sufficient
|
||||
*/
|
||||
template <class RESULTSET>
|
||||
bool searchLevel(RESULTSET& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq, distance_vector_t& dists, const float epsError) const {
|
||||
/* If this is a leaf node, then do check and return. */
|
||||
if ((node->child1 == NULL) && (node->child2 == NULL)) {
|
||||
// count_leaf += (node->lr.right-node->lr.left); // Removed since was
|
||||
// neither used nor returned to the user.
|
||||
DistanceType worst_dist = result_set.worstDist();
|
||||
for (IndexType i = node->node_type.lr.left; i < node->node_type.lr.right; ++i) {
|
||||
const IndexType index = BaseClassRef::vind[i]; // reorder... : i;
|
||||
DistanceType dist = distance.evalMetric(vec, index, (DIM > 0 ? DIM : BaseClassRef::dim));
|
||||
if (dist < worst_dist) {
|
||||
if (!result_set.addPoint(dist, BaseClassRef::vind[i])) {
|
||||
// the resultset doesn't want to receive any more points, we're done
|
||||
// searching!
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Which child branch should be taken first? */
|
||||
int idx = node->node_type.sub.divfeat;
|
||||
ElementType val = vec[idx];
|
||||
DistanceType diff1 = val - node->node_type.sub.divlow;
|
||||
DistanceType diff2 = val - node->node_type.sub.divhigh;
|
||||
|
||||
NodePtr bestChild;
|
||||
NodePtr otherChild;
|
||||
DistanceType cut_dist;
|
||||
if ((diff1 + diff2) < 0) {
|
||||
bestChild = node->child1;
|
||||
otherChild = node->child2;
|
||||
cut_dist = distance.accum_dist(val, node->node_type.sub.divhigh, idx);
|
||||
} else {
|
||||
bestChild = node->child2;
|
||||
otherChild = node->child1;
|
||||
cut_dist = distance.accum_dist(val, node->node_type.sub.divlow, idx);
|
||||
}
|
||||
|
||||
/* Call recursively to search next level down. */
|
||||
if (!searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError)) {
|
||||
// the resultset doesn't want to receive any more points, we're done
|
||||
// searching!
|
||||
return false;
|
||||
}
|
||||
|
||||
DistanceType dst = dists[idx];
|
||||
mindistsq = mindistsq + cut_dist - dst;
|
||||
dists[idx] = cut_dist;
|
||||
if (mindistsq * epsError <= result_set.worstDist()) {
|
||||
if (!searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError)) {
|
||||
// the resultset doesn't want to receive any more points, we're done
|
||||
// searching!
|
||||
return false;
|
||||
}
|
||||
}
|
||||
dists[idx] = dst;
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace nanoflann
|
||||
|
||||
#endif /* NANOFLANN_HPP_ */
|
||||
|
|
@ -1,639 +0,0 @@
|
|||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2011-2021 Jose Luis Blanco (joseluisblancoc@gmail.com).
|
||||
* All rights reserved.
|
||||
*
|
||||
* THE BSD LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
/**
|
||||
* This nanoflann_mt.hpp is derived from nanoflann.hpp to parallelize the tree construction with TBB
|
||||
*/
|
||||
|
||||
/** \mainpage nanoflann C++ API documentation
|
||||
* nanoflann is a C++ header-only library for building KD-Trees, mostly
|
||||
* optimized for 2D or 3D point clouds.
|
||||
*
|
||||
* nanoflann does not require compiling or installing, just an
|
||||
* #include <nanoflann.hpp> in your code.
|
||||
*
|
||||
* See:
|
||||
* - <a href="modules.html" >C++ API organized by modules</a>
|
||||
* - <a href="https://github.com/jlblancoc/nanoflann" >Online README</a>
|
||||
* - <a href="http://jlblancoc.github.io/nanoflann/" >Doxygen
|
||||
* documentation</a>
|
||||
*/
|
||||
|
||||
#ifndef NANOFLANN_TBB_HPP_
|
||||
#define NANOFLANN_TBB_HPP_
|
||||
|
||||
#include <tbb/tbb.h>
|
||||
#include <small_gicp/ann/nanoflann.hpp>
|
||||
|
||||
namespace nanoflann {
|
||||
|
||||
/** kd-tree base-class
|
||||
*
|
||||
* Contains the member functions common to the classes KDTreeSingleIndexAdaptor
|
||||
* and KDTreeSingleIndexDynamicAdaptor_.
|
||||
*
|
||||
* \tparam Derived The name of the class which inherits this class.
|
||||
* \tparam DatasetAdaptor The user-provided adaptor (see comments above).
|
||||
* \tparam Distance The distance metric to use, these are all classes derived
|
||||
* from nanoflann::Metric \tparam DIM Dimensionality of data points (e.g. 3 for
|
||||
* 3D points) \tparam IndexType Will be typically size_t or int
|
||||
*/
|
||||
|
||||
template <class Derived, typename Distance, class DatasetAdaptor, int DIM = -1, typename IndexType = size_t>
|
||||
class KDTreeBaseClassTBB {
|
||||
public:
|
||||
/** Frees the previously-built index. Automatically called within
|
||||
* buildIndex(). */
|
||||
void freeIndex(Derived& obj) {
|
||||
obj.root_node = NULL;
|
||||
obj.m_size_at_index_build = 0;
|
||||
}
|
||||
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
typedef typename Distance::DistanceType DistanceType;
|
||||
|
||||
/*--------------------- Internal Data Structures --------------------------*/
|
||||
struct Node {
|
||||
/** Union used because a node can be either a LEAF node or a non-leaf node,
|
||||
* so both data fields are never used simultaneously */
|
||||
union {
|
||||
struct leaf {
|
||||
IndexType left, right; //!< Indices of points in leaf node
|
||||
} lr;
|
||||
struct nonleaf {
|
||||
int divfeat; //!< Dimension used for subdivision.
|
||||
DistanceType divlow, divhigh; //!< The values used for subdivision.
|
||||
} sub;
|
||||
} node_type;
|
||||
Node *child1, *child2; //!< Child nodes (both=NULL mean its a leaf node)
|
||||
};
|
||||
|
||||
typedef Node* NodePtr;
|
||||
|
||||
struct Interval {
|
||||
ElementType low, high;
|
||||
};
|
||||
|
||||
/**
|
||||
* Array of indices to vectors in the dataset.
|
||||
*/
|
||||
std::vector<IndexType> vind;
|
||||
|
||||
NodePtr root_node;
|
||||
|
||||
size_t m_leaf_max_size;
|
||||
|
||||
size_t m_size; //!< Number of current points in the dataset
|
||||
size_t m_size_at_index_build; //!< Number of points in the dataset when the
|
||||
//!< index was built
|
||||
int dim; //!< Dimensionality of each data point
|
||||
|
||||
/** Define "BoundingBox" as a fixed-size or variable-size container depending
|
||||
* on "DIM" */
|
||||
typedef typename array_or_vector_selector<DIM, Interval>::container_t BoundingBox;
|
||||
|
||||
/** Define "distance_vector_t" as a fixed-size or variable-size container
|
||||
* depending on "DIM" */
|
||||
typedef typename array_or_vector_selector<DIM, DistanceType>::container_t distance_vector_t;
|
||||
|
||||
/** The KD-tree used to find neighbours */
|
||||
|
||||
BoundingBox root_bbox;
|
||||
|
||||
/**
|
||||
* Pooled memory allocator.
|
||||
*
|
||||
* Using a pooled memory allocator is more efficient
|
||||
* than allocating memory directly when there is a large
|
||||
* number small of memory allocations.
|
||||
*/
|
||||
tbb::concurrent_vector<Node> pool;
|
||||
|
||||
/** Returns number of points in dataset */
|
||||
size_t size(const Derived& obj) const { return obj.m_size; }
|
||||
|
||||
/** Returns the length of each point in the dataset */
|
||||
size_t veclen(const Derived& obj) { return static_cast<size_t>(DIM > 0 ? DIM : obj.dim); }
|
||||
|
||||
/// Helper accessor to the dataset points:
|
||||
inline ElementType dataset_get(const Derived& obj, size_t idx, int component) const { return obj.dataset.kdtree_get_pt(idx, component); }
|
||||
|
||||
void computeMinMax(const Derived& obj, IndexType* ind, IndexType count, int element, ElementType& min_elem, ElementType& max_elem) {
|
||||
min_elem = dataset_get(obj, ind[0], element);
|
||||
max_elem = dataset_get(obj, ind[0], element);
|
||||
for (IndexType i = 1; i < count; ++i) {
|
||||
ElementType val = dataset_get(obj, ind[i], element);
|
||||
if (val < min_elem) min_elem = val;
|
||||
if (val > max_elem) max_elem = val;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a tree node that subdivides the list of vecs from vind[first]
|
||||
* to vind[last]. The routine is called recursively on each sublist.
|
||||
*
|
||||
* @param left index of the first vector
|
||||
* @param right index of the last vector
|
||||
*/
|
||||
NodePtr divideTree(Derived& obj, const IndexType left, const IndexType right, BoundingBox& bbox) {
|
||||
NodePtr node = &(*pool.emplace_back());
|
||||
|
||||
/* If too few exemplars remain, then make this a leaf node. */
|
||||
if ((right - left) <= static_cast<IndexType>(obj.m_leaf_max_size)) {
|
||||
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
|
||||
node->node_type.lr.left = left;
|
||||
node->node_type.lr.right = right;
|
||||
|
||||
// compute bounding-box of leaf points
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
bbox[i].low = dataset_get(obj, obj.vind[left], i);
|
||||
bbox[i].high = dataset_get(obj, obj.vind[left], i);
|
||||
}
|
||||
for (IndexType k = left + 1; k < right; ++k) {
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
if (bbox[i].low > dataset_get(obj, obj.vind[k], i)) bbox[i].low = dataset_get(obj, obj.vind[k], i);
|
||||
if (bbox[i].high < dataset_get(obj, obj.vind[k], i)) bbox[i].high = dataset_get(obj, obj.vind[k], i);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
IndexType idx;
|
||||
int cutfeat;
|
||||
DistanceType cutval;
|
||||
middleSplit_(obj, &obj.vind[0] + left, right - left, idx, cutfeat, cutval, bbox);
|
||||
|
||||
node->node_type.sub.divfeat = cutfeat;
|
||||
|
||||
BoundingBox left_bbox(bbox);
|
||||
left_bbox[cutfeat].high = cutval;
|
||||
|
||||
BoundingBox right_bbox(bbox);
|
||||
right_bbox[cutfeat].low = cutval;
|
||||
|
||||
if ((right - left) <= 512) {
|
||||
// Do not parallelize if there are less than 512 points
|
||||
node->child1 = divideTree(obj, left, left + idx, left_bbox);
|
||||
node->child2 = divideTree(obj, left + idx, right, right_bbox);
|
||||
} else {
|
||||
// I did my best to check that the following parallelization does not cause race conditions.
|
||||
// But, still not 100% sure if it is correct.
|
||||
|
||||
tbb::parallel_invoke([&] { node->child1 = divideTree(obj, left, left + idx, left_bbox); }, [&] { node->child2 = divideTree(obj, left + idx, right, right_bbox); });
|
||||
}
|
||||
|
||||
node->node_type.sub.divlow = left_bbox[cutfeat].high;
|
||||
node->node_type.sub.divhigh = right_bbox[cutfeat].low;
|
||||
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
|
||||
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
|
||||
}
|
||||
}
|
||||
|
||||
return node;
|
||||
}
|
||||
|
||||
void middleSplit_(Derived& obj, IndexType* ind, IndexType count, IndexType& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox) {
|
||||
const DistanceType EPS = static_cast<DistanceType>(0.00001);
|
||||
ElementType max_span = bbox[0].high - bbox[0].low;
|
||||
for (int i = 1; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
ElementType span = bbox[i].high - bbox[i].low;
|
||||
if (span > max_span) {
|
||||
max_span = span;
|
||||
}
|
||||
}
|
||||
ElementType max_spread = -1;
|
||||
cutfeat = 0;
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
ElementType span = bbox[i].high - bbox[i].low;
|
||||
if (span > (1 - EPS) * max_span) {
|
||||
ElementType min_elem, max_elem;
|
||||
computeMinMax(obj, ind, count, i, min_elem, max_elem);
|
||||
ElementType spread = max_elem - min_elem;
|
||||
if (spread > max_spread) {
|
||||
cutfeat = i;
|
||||
max_spread = spread;
|
||||
}
|
||||
}
|
||||
}
|
||||
// split in the middle
|
||||
DistanceType split_val = (bbox[cutfeat].low + bbox[cutfeat].high) / 2;
|
||||
ElementType min_elem, max_elem;
|
||||
computeMinMax(obj, ind, count, cutfeat, min_elem, max_elem);
|
||||
|
||||
if (split_val < min_elem)
|
||||
cutval = min_elem;
|
||||
else if (split_val > max_elem)
|
||||
cutval = max_elem;
|
||||
else
|
||||
cutval = split_val;
|
||||
|
||||
IndexType lim1, lim2;
|
||||
planeSplit(obj, ind, count, cutfeat, cutval, lim1, lim2);
|
||||
|
||||
if (lim1 > count / 2)
|
||||
index = lim1;
|
||||
else if (lim2 < count / 2)
|
||||
index = lim2;
|
||||
else
|
||||
index = count / 2;
|
||||
}
|
||||
|
||||
/**
|
||||
* Subdivide the list of points by a plane perpendicular on axe corresponding
|
||||
* to the 'cutfeat' dimension at 'cutval' position.
|
||||
*
|
||||
* On return:
|
||||
* dataset[ind[0..lim1-1]][cutfeat]<cutval
|
||||
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval
|
||||
* dataset[ind[lim2..count]][cutfeat]>cutval
|
||||
*/
|
||||
void planeSplit(Derived& obj, IndexType* ind, const IndexType count, int cutfeat, DistanceType& cutval, IndexType& lim1, IndexType& lim2) {
|
||||
/* Move vector indices for left subtree to front of list. */
|
||||
IndexType left = 0;
|
||||
IndexType right = count - 1;
|
||||
for (;;) {
|
||||
while (left <= right && dataset_get(obj, ind[left], cutfeat) < cutval) ++left;
|
||||
while (right && left <= right && dataset_get(obj, ind[right], cutfeat) >= cutval) --right;
|
||||
if (left > right || !right) break; // "!right" was added to support unsigned Index types
|
||||
std::swap(ind[left], ind[right]);
|
||||
++left;
|
||||
--right;
|
||||
}
|
||||
/* If either list is empty, it means that all remaining features
|
||||
* are identical. Split in the middle to maintain a balanced tree.
|
||||
*/
|
||||
lim1 = left;
|
||||
right = count - 1;
|
||||
for (;;) {
|
||||
while (left <= right && dataset_get(obj, ind[left], cutfeat) <= cutval) ++left;
|
||||
while (right && left <= right && dataset_get(obj, ind[right], cutfeat) > cutval) --right;
|
||||
if (left > right || !right) break; // "!right" was added to support unsigned Index types
|
||||
std::swap(ind[left], ind[right]);
|
||||
++left;
|
||||
--right;
|
||||
}
|
||||
lim2 = left;
|
||||
}
|
||||
|
||||
DistanceType computeInitialDistances(const Derived& obj, const ElementType* vec, distance_vector_t& dists) const {
|
||||
assert(vec);
|
||||
DistanceType distsq = DistanceType();
|
||||
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
|
||||
if (vec[i] < obj.root_bbox[i].low) {
|
||||
dists[i] = obj.distance.accum_dist(vec[i], obj.root_bbox[i].low, i);
|
||||
distsq += dists[i];
|
||||
}
|
||||
if (vec[i] > obj.root_bbox[i].high) {
|
||||
dists[i] = obj.distance.accum_dist(vec[i], obj.root_bbox[i].high, i);
|
||||
distsq += dists[i];
|
||||
}
|
||||
}
|
||||
return distsq;
|
||||
}
|
||||
};
|
||||
|
||||
/** @addtogroup kdtrees_grp KD-tree classes and adaptors
|
||||
* @{ */
|
||||
|
||||
/** kd-tree static index
|
||||
*
|
||||
* Contains the k-d trees and other information for indexing a set of points
|
||||
* for nearest-neighbor matching.
|
||||
*
|
||||
* The class "DatasetAdaptor" must provide the following interface (can be
|
||||
* non-virtual, inlined methods):
|
||||
*
|
||||
* \code
|
||||
* // Must return the number of data poins
|
||||
* inline size_t kdtree_get_point_count() const { ... }
|
||||
*
|
||||
*
|
||||
* // Must return the dim'th component of the idx'th point in the class:
|
||||
* inline T kdtree_get_pt(const size_t idx, const size_t dim) const { ... }
|
||||
*
|
||||
* // Optional bounding-box computation: return false to default to a standard
|
||||
* bbox computation loop.
|
||||
* // Return true if the BBOX was already computed by the class and returned
|
||||
* in "bb" so it can be avoided to redo it again.
|
||||
* // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3
|
||||
* for point clouds) template <class BBOX> bool kdtree_get_bbox(BBOX &bb) const
|
||||
* {
|
||||
* bb[0].low = ...; bb[0].high = ...; // 0th dimension limits
|
||||
* bb[1].low = ...; bb[1].high = ...; // 1st dimension limits
|
||||
* ...
|
||||
* return true;
|
||||
* }
|
||||
*
|
||||
* \endcode
|
||||
*
|
||||
* \tparam DatasetAdaptor The user-provided adaptor (see comments above).
|
||||
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
|
||||
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. \tparam DIM
|
||||
* Dimensionality of data points (e.g. 3 for 3D points) \tparam IndexType Will
|
||||
* be typically size_t or int
|
||||
*/
|
||||
template <typename Distance, class DatasetAdaptor, int DIM = -1, typename IndexType = size_t>
|
||||
class KDTreeSingleIndexAdaptorTBB : public KDTreeBaseClassTBB<KDTreeSingleIndexAdaptorTBB<Distance, DatasetAdaptor, DIM, IndexType>, Distance, DatasetAdaptor, DIM, IndexType> {
|
||||
public:
|
||||
/** Deleted copy constructor*/
|
||||
KDTreeSingleIndexAdaptorTBB(const KDTreeSingleIndexAdaptorTBB<Distance, DatasetAdaptor, DIM, IndexType>&) = delete;
|
||||
|
||||
/**
|
||||
* The dataset used by this index
|
||||
*/
|
||||
const DatasetAdaptor& dataset; //!< The source of our data
|
||||
|
||||
const KDTreeSingleIndexAdaptorParams index_params;
|
||||
|
||||
Distance distance;
|
||||
|
||||
typedef typename nanoflann::KDTreeBaseClassTBB<nanoflann::KDTreeSingleIndexAdaptorTBB<Distance, DatasetAdaptor, DIM, IndexType>, Distance, DatasetAdaptor, DIM, IndexType>
|
||||
BaseClassRef;
|
||||
|
||||
typedef typename BaseClassRef::ElementType ElementType;
|
||||
typedef typename BaseClassRef::DistanceType DistanceType;
|
||||
|
||||
typedef typename BaseClassRef::Node Node;
|
||||
typedef Node* NodePtr;
|
||||
|
||||
typedef typename BaseClassRef::Interval Interval;
|
||||
/** Define "BoundingBox" as a fixed-size or variable-size container depending
|
||||
* on "DIM" */
|
||||
typedef typename BaseClassRef::BoundingBox BoundingBox;
|
||||
|
||||
/** Define "distance_vector_t" as a fixed-size or variable-size container
|
||||
* depending on "DIM" */
|
||||
typedef typename BaseClassRef::distance_vector_t distance_vector_t;
|
||||
|
||||
/**
|
||||
* KDTree constructor
|
||||
*
|
||||
* Refer to docs in README.md or online in
|
||||
* https://github.com/jlblancoc/nanoflann
|
||||
*
|
||||
* The KD-Tree point dimension (the length of each point in the datase, e.g. 3
|
||||
* for 3D points) is determined by means of:
|
||||
* - The \a DIM template parameter if >0 (highest priority)
|
||||
* - Otherwise, the \a dimensionality parameter of this constructor.
|
||||
*
|
||||
* @param inputData Dataset with the input features
|
||||
* @param params Basically, the maximum leaf node size
|
||||
*/
|
||||
KDTreeSingleIndexAdaptorTBB(const int dimensionality, const DatasetAdaptor& inputData, const KDTreeSingleIndexAdaptorParams& params = KDTreeSingleIndexAdaptorParams())
|
||||
: dataset(inputData),
|
||||
index_params(params),
|
||||
distance(inputData) {
|
||||
BaseClassRef::root_node = NULL;
|
||||
BaseClassRef::m_size = dataset.kdtree_get_point_count();
|
||||
BaseClassRef::m_size_at_index_build = BaseClassRef::m_size;
|
||||
BaseClassRef::dim = dimensionality;
|
||||
if (DIM > 0) BaseClassRef::dim = DIM;
|
||||
BaseClassRef::m_leaf_max_size = params.leaf_max_size;
|
||||
|
||||
// Create a permutable array of indices to the input vectors.
|
||||
init_vind();
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds the index
|
||||
*/
|
||||
void buildIndex() {
|
||||
BaseClassRef::m_size = dataset.kdtree_get_point_count();
|
||||
BaseClassRef::m_size_at_index_build = BaseClassRef::m_size;
|
||||
init_vind();
|
||||
this->freeIndex(*this);
|
||||
BaseClassRef::m_size_at_index_build = BaseClassRef::m_size;
|
||||
if (BaseClassRef::m_size == 0) return;
|
||||
computeBoundingBox(BaseClassRef::root_bbox);
|
||||
|
||||
BaseClassRef::pool.reserve(BaseClassRef::m_size);
|
||||
|
||||
BaseClassRef::root_node = this->divideTree(*this, 0, BaseClassRef::m_size,
|
||||
BaseClassRef::root_bbox); // construct the tree
|
||||
}
|
||||
|
||||
/** \name Query methods
|
||||
* @{ */
|
||||
|
||||
/**
|
||||
* Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored
|
||||
* inside the result object.
|
||||
*
|
||||
* Params:
|
||||
* result = the result object in which the indices of the
|
||||
* nearest-neighbors are stored vec = the vector for which to search the
|
||||
* nearest neighbors
|
||||
*
|
||||
* \tparam RESULTSET Should be any ResultSet<DistanceType>
|
||||
* \return True if the requested neighbors could be found.
|
||||
* \sa knnSearch, radiusSearch
|
||||
*/
|
||||
template <typename RESULTSET>
|
||||
bool findNeighbors(RESULTSET& result, const ElementType* vec, const SearchParams& searchParams) const {
|
||||
assert(vec);
|
||||
if (this->size(*this) == 0) return false;
|
||||
if (!BaseClassRef::root_node) throw std::runtime_error("[nanoflann] findNeighbors() called before building the index.");
|
||||
float epsError = 1 + searchParams.eps;
|
||||
|
||||
distance_vector_t dists; // fixed or variable-sized container (depending on DIM)
|
||||
auto zero = static_cast<decltype(result.worstDist())>(0);
|
||||
assign(dists, (DIM > 0 ? DIM : BaseClassRef::dim),
|
||||
zero); // Fill it with zeros.
|
||||
DistanceType distsq = this->computeInitialDistances(*this, vec, dists);
|
||||
searchLevel(
|
||||
result,
|
||||
vec,
|
||||
BaseClassRef::root_node,
|
||||
distsq,
|
||||
dists,
|
||||
epsError); // "count_leaf" parameter removed since was neither
|
||||
// used nor returned to the user.
|
||||
return result.full();
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1].
|
||||
* Their indices are stored inside the result object. \sa radiusSearch,
|
||||
* findNeighbors \note nChecks_IGNORED is ignored but kept for compatibility
|
||||
* with the original FLANN interface. \return Number `N` of valid points in
|
||||
* the result set. Only the first `N` entries in `out_indices` and
|
||||
* `out_distances_sq` will be valid. Return may be less than `num_closest`
|
||||
* only if the number of elements in the tree is less than `num_closest`.
|
||||
*/
|
||||
size_t knnSearch(const ElementType* query_point, const size_t num_closest, IndexType* out_indices, DistanceType* out_distances_sq, const int /* nChecks_IGNORED */ = 10) const {
|
||||
nanoflann::KNNResultSet<DistanceType, IndexType> resultSet(num_closest);
|
||||
resultSet.init(out_indices, out_distances_sq);
|
||||
this->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
|
||||
return resultSet.size();
|
||||
}
|
||||
|
||||
/**
|
||||
* Find all the neighbors to \a query_point[0:dim-1] within a maximum radius.
|
||||
* The output is given as a vector of pairs, of which the first element is a
|
||||
* point index and the second the corresponding distance. Previous contents of
|
||||
* \a IndicesDists are cleared.
|
||||
*
|
||||
* If searchParams.sorted==true, the output list is sorted by ascending
|
||||
* distances.
|
||||
*
|
||||
* For a better performance, it is advisable to do a .reserve() on the vector
|
||||
* if you have any wild guess about the number of expected matches.
|
||||
*
|
||||
* \sa knnSearch, findNeighbors, radiusSearchCustomCallback
|
||||
* \return The number of points within the given radius (i.e. indices.size()
|
||||
* or dists.size() )
|
||||
*/
|
||||
size_t radiusSearch(const ElementType* query_point, const DistanceType& radius, std::vector<std::pair<IndexType, DistanceType>>& IndicesDists, const SearchParams& searchParams)
|
||||
const {
|
||||
RadiusResultSet<DistanceType, IndexType> resultSet(radius, IndicesDists);
|
||||
const size_t nFound = radiusSearchCustomCallback(query_point, resultSet, searchParams);
|
||||
if (searchParams.sorted) std::sort(IndicesDists.begin(), IndicesDists.end(), IndexDist_Sorter());
|
||||
return nFound;
|
||||
}
|
||||
|
||||
/**
|
||||
* Just like radiusSearch() but with a custom callback class for each point
|
||||
* found in the radius of the query. See the source of RadiusResultSet<> as a
|
||||
* start point for your own classes. \sa radiusSearch
|
||||
*/
|
||||
template <class SEARCH_CALLBACK>
|
||||
size_t radiusSearchCustomCallback(const ElementType* query_point, SEARCH_CALLBACK& resultSet, const SearchParams& searchParams = SearchParams()) const {
|
||||
this->findNeighbors(resultSet, query_point, searchParams);
|
||||
return resultSet.size();
|
||||
}
|
||||
|
||||
/** @} */
|
||||
|
||||
public:
|
||||
/** Make sure the auxiliary list \a vind has the same size than the current
|
||||
* dataset, and re-generate if size has changed. */
|
||||
void init_vind() {
|
||||
// Create a permutable array of indices to the input vectors.
|
||||
BaseClassRef::m_size = dataset.kdtree_get_point_count();
|
||||
if (BaseClassRef::vind.size() != BaseClassRef::m_size) BaseClassRef::vind.resize(BaseClassRef::m_size);
|
||||
for (size_t i = 0; i < BaseClassRef::m_size; i++) BaseClassRef::vind[i] = i;
|
||||
}
|
||||
|
||||
void computeBoundingBox(BoundingBox& bbox) {
|
||||
resize(bbox, (DIM > 0 ? DIM : BaseClassRef::dim));
|
||||
if (dataset.kdtree_get_bbox(bbox)) {
|
||||
// Done! It was implemented in derived class
|
||||
} else {
|
||||
const size_t N = dataset.kdtree_get_point_count();
|
||||
if (!N)
|
||||
throw std::runtime_error(
|
||||
"[nanoflann] computeBoundingBox() called but "
|
||||
"no data points found.");
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) {
|
||||
bbox[i].low = bbox[i].high = this->dataset_get(*this, 0, i);
|
||||
}
|
||||
for (size_t k = 1; k < N; ++k) {
|
||||
for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) {
|
||||
if (this->dataset_get(*this, k, i) < bbox[i].low) bbox[i].low = this->dataset_get(*this, k, i);
|
||||
if (this->dataset_get(*this, k, i) > bbox[i].high) bbox[i].high = this->dataset_get(*this, k, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs an exact search in the tree starting from a node.
|
||||
* \tparam RESULTSET Should be any ResultSet<DistanceType>
|
||||
* \return true if the search should be continued, false if the results are
|
||||
* sufficient
|
||||
*/
|
||||
template <class RESULTSET>
|
||||
bool searchLevel(RESULTSET& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq, distance_vector_t& dists, const float epsError) const {
|
||||
/* If this is a leaf node, then do check and return. */
|
||||
if ((node->child1 == NULL) && (node->child2 == NULL)) {
|
||||
// count_leaf += (node->lr.right-node->lr.left); // Removed since was
|
||||
// neither used nor returned to the user.
|
||||
DistanceType worst_dist = result_set.worstDist();
|
||||
for (IndexType i = node->node_type.lr.left; i < node->node_type.lr.right; ++i) {
|
||||
const IndexType index = BaseClassRef::vind[i]; // reorder... : i;
|
||||
DistanceType dist = distance.evalMetric(vec, index, (DIM > 0 ? DIM : BaseClassRef::dim));
|
||||
if (dist < worst_dist) {
|
||||
if (!result_set.addPoint(dist, BaseClassRef::vind[i])) {
|
||||
// the resultset doesn't want to receive any more points, we're done
|
||||
// searching!
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Which child branch should be taken first? */
|
||||
int idx = node->node_type.sub.divfeat;
|
||||
ElementType val = vec[idx];
|
||||
DistanceType diff1 = val - node->node_type.sub.divlow;
|
||||
DistanceType diff2 = val - node->node_type.sub.divhigh;
|
||||
|
||||
NodePtr bestChild;
|
||||
NodePtr otherChild;
|
||||
DistanceType cut_dist;
|
||||
if ((diff1 + diff2) < 0) {
|
||||
bestChild = node->child1;
|
||||
otherChild = node->child2;
|
||||
cut_dist = distance.accum_dist(val, node->node_type.sub.divhigh, idx);
|
||||
} else {
|
||||
bestChild = node->child2;
|
||||
otherChild = node->child1;
|
||||
cut_dist = distance.accum_dist(val, node->node_type.sub.divlow, idx);
|
||||
}
|
||||
|
||||
/* Call recursively to search next level down. */
|
||||
if (!searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError)) {
|
||||
// the resultset doesn't want to receive any more points, we're done
|
||||
// searching!
|
||||
return false;
|
||||
}
|
||||
|
||||
DistanceType dst = dists[idx];
|
||||
mindistsq = mindistsq + cut_dist - dst;
|
||||
dists[idx] = cut_dist;
|
||||
if (mindistsq * epsError <= result_set.worstDist()) {
|
||||
if (!searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError)) {
|
||||
// the resultset doesn't want to receive any more points, we're done
|
||||
// searching!
|
||||
return false;
|
||||
}
|
||||
}
|
||||
dists[idx] = dst;
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace nanoflann
|
||||
|
||||
#endif /* NANOFLANN_HPP_ */
|
||||
Loading…
Reference in New Issue