mirror of https://github.com/koide3/small_gicp.git
fix references
This commit is contained in:
parent
4a2a0226e9
commit
032136bdd2
|
|
@ -4,7 +4,8 @@
|
|||
booktitle = {{IEEE International Conference on Robotics and Automation (ICRA2011)}},
|
||||
month = {May},
|
||||
year = {2011},
|
||||
address = {Shanghai, China}
|
||||
address = {Shanghai, China},
|
||||
doi = {10.1109/ICRA.2011.5980567}
|
||||
}
|
||||
|
||||
@article{Zhou,
|
||||
|
|
@ -12,6 +13,7 @@
|
|||
title = {{Open3D}: {A} Modern Library for {3D} Data Processing},
|
||||
journal = {arXiv:1801.09847},
|
||||
year = {2018},
|
||||
doi = {10.48550/arXiv.1801.09847}
|
||||
}
|
||||
|
||||
@ARTICLE{Bai,
|
||||
|
|
@ -21,7 +23,8 @@
|
|||
year={2022},
|
||||
volume={7},
|
||||
number={2},
|
||||
pages={4861-4868}
|
||||
pages={4861-4868},
|
||||
doi={10.1109/LRA.2022.3152830}
|
||||
}
|
||||
|
||||
@inproceedings{Koide,
|
||||
|
|
@ -30,7 +33,8 @@
|
|||
booktitle = {IEEE International Conference on Robotics and Automation (ICRA2021)},
|
||||
pages = {11054--11059},
|
||||
year = {2021},
|
||||
month = {May}
|
||||
month = {May},
|
||||
doi = {10.1109/ICRA48506.2021.9560835}
|
||||
}
|
||||
|
||||
@article{Zhang,
|
||||
|
|
@ -41,15 +45,17 @@
|
|||
number={2},
|
||||
pages={119--152},
|
||||
year={1994},
|
||||
publisher={Springer}
|
||||
publisher={Springer},
|
||||
doi={10.1007/BF01427149}
|
||||
}
|
||||
|
||||
@inproceedings{Segal,
|
||||
title={Generalized-icp.},
|
||||
title={Generalized-{ICP}},
|
||||
author={Segal, Aleksandr and Haehnel, Dirk and Thrun, Sebastian},
|
||||
booktitle={Robotics: science and systems},
|
||||
volume={2},
|
||||
number={4},
|
||||
pages={435},
|
||||
year={2009}
|
||||
year={2009},
|
||||
doi={10.15607/rss.2009.v.021}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -37,8 +37,8 @@ to offer efficiency, portability, and customizability.
|
|||
|
||||
# Statement of need
|
||||
|
||||
There are several point cloud processing libraries, and PCL @Rusu and Open3D
|
||||
@Zhou are the notable ones among them.
|
||||
There are several point cloud processing libraries, and PCL [@Rusu] and Open3D
|
||||
[@Zhou] are the notable ones among them.
|
||||
Although they offer numerous functionalities, including those required for point cloud
|
||||
registration, they present several challenges for practical applications and scientific
|
||||
research.
|
||||
|
|
@ -87,12 +87,12 @@ distribution-to-distribution correspondence).
|
|||
- Random sampling
|
||||
- Nearest neighbor search and point accumulation structures
|
||||
- KdTree
|
||||
- Linear iVox (supports incremental points insertion and LRU-cache-based voxel deletion) @Bai
|
||||
- Gaussian voxelmap (supports incremental points insertion and LRU-cache-based voxel deletion) @Koide
|
||||
- Linear iVox (supports incremental points insertion and LRU-cache-based voxel deletion) [@Bai]
|
||||
- Gaussian voxelmap (supports incremental points insertion and LRU-cache-based voxel deletion) [@Koide]
|
||||
- Registration error functions
|
||||
- Point-to-point ICP error @Zhang
|
||||
- Point-to-point ICP error [@Zhang]
|
||||
- Point-to-plane ICP error
|
||||
- Generalized ICP error @Segal
|
||||
- Generalized ICP error [@Segal]
|
||||
- Robust kernels
|
||||
- Least squares optimizers
|
||||
- GaussNewton optimizer
|
||||
|
|
|
|||
Loading…
Reference in New Issue