Merge pull request #2465 from xizheyin/rustc-query

Adjust some doc for Query System
This commit is contained in:
Tshepang Mbambo 2025-06-14 21:39:25 +02:00 committed by GitHub
commit 91ede12d31
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 66 additions and 59 deletions

View File

@ -67,9 +67,15 @@ are cheaply cloneable; insert an `Rc` if necessary).
### Providers
If, however, the query is *not* in the cache, then the compiler will
try to find a suitable **provider**. A provider is a function that has
been defined and linked into the compiler somewhere that contains the
code to compute the result of the query.
call the corresponding **provider** function. A provider is a function
implemented in a specific module and **manually registered** into the
[`Providers`][providers_struct] struct during compiler initialization.
The macro system generates the [`Providers`][providers_struct] struct,
which acts as a function table for all query implementations, where each
field is a function pointer to the actual provider.
**Note:** The `Providers` struct is generated by macros and acts as a function table for all query implementations.
It is **not** a Rust trait, but a plain struct with function pointer fields.
**Providers are defined per-crate.** The compiler maintains,
internally, a table of providers for every crate, at least
@ -97,62 +103,6 @@ fn provider<'tcx>(
Providers take two arguments: the `tcx` and the query key.
They return the result of the query.
### How providers are setup
When the tcx is created, it is given the providers by its creator using
the [`Providers`][providers_struct] struct. This struct is generated by
the macros here, but it is basically a big list of function pointers:
[providers_struct]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/struct.Providers.html
```rust,ignore
struct Providers {
type_of: for<'tcx> fn(TyCtxt<'tcx>, DefId) -> Ty<'tcx>,
...
}
```
At present, we have one copy of the struct for local crates, and one
for external crates, though the plan is that we may eventually have
one per crate.
These `Providers` structs are ultimately created and populated by
`rustc_driver`, but it does this by distributing the work
throughout the other `rustc_*` crates. This is done by invoking
various [`provide`][provide_fn] functions. These functions tend to look
something like this:
[provide_fn]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/fn.provide.html
```rust,ignore
pub fn provide(providers: &mut Providers) {
*providers = Providers {
type_of,
..*providers
};
}
```
That is, they take an `&mut Providers` and mutate it in place. Usually
we use the formulation above just because it looks nice, but you could
as well do `providers.type_of = type_of`, which would be equivalent.
(Here, `type_of` would be a top-level function, defined as we saw
before.) So, if we want to add a provider for some other query,
let's call it `fubar`, into the crate above, we might modify the `provide()`
function like so:
```rust,ignore
pub fn provide(providers: &mut Providers) {
*providers = Providers {
type_of,
fubar,
..*providers
};
}
fn fubar<'tcx>(tcx: TyCtxt<'tcx>, key: DefId) -> Fubar<'tcx> { ... }
```
N.B. Most of the `rustc_*` crates only provide **local
providers**. Almost all **extern providers** wind up going through the
[`rustc_metadata` crate][rustc_metadata], which loads the information
@ -164,6 +114,63 @@ they define both a `provide` and a `provide_extern` function, through
[rustc_metadata]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_metadata/index.html
[wasm_import_module_map]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/back/symbol_export/fn.wasm_import_module_map.html
### How providers are set up
When the tcx is created, it is given the providers by its creator using
the [`Providers`][providers_struct] struct. This struct is generated by
the macros here, but it is basically a big list of function pointers:
[providers_struct]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/query/struct.Providers.html
```rust,ignore
struct Providers {
type_of: for<'tcx> fn(TyCtxt<'tcx>, DefId) -> Ty<'tcx>,
// ... one field for each query
}
```
#### How are providers registered?
The `Providers` struct is filled in during compiler initialization, mainly by the `rustc_driver` crate.
But the actual provider functions are implemented in various `rustc_*` crates (like `rustc_middle`, `rustc_hir_analysis`, etc).
To register providers, each crate exposes a [`provide`][provide_fn] function that looks like this:
[provide_fn]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/hir/fn.provide.html
```rust,ignore
pub fn provide(providers: &mut Providers) {
*providers = Providers {
type_of,
// ... add more providers here
..*providers
};
}
```
- This function takes a mutable reference to the `Providers` struct and sets the fields to point to the correct provider functions.
- You can also assign fields individually, e.g. `providers.type_of = type_of;`.
#### Adding a new provider
Suppose you want to add a new query called `fubar`. You would:
1. Implement the provider function:
```rust,ignore
fn fubar<'tcx>(tcx: TyCtxt<'tcx>, key: DefId) -> Fubar<'tcx> { ... }
```
2. Register it in the `provide` function:
```rust,ignore
pub fn provide(providers: &mut Providers) {
*providers = Providers {
fubar,
..*providers
};
}
```
---
## Adding a new query
How do you add a new query?