Merge pull request #18 from nikomatsakis/master

remove chap-NNN labels, move some content from rustc
This commit is contained in:
Niko Matsakis 2018-01-19 06:52:49 -05:00 committed by GitHub
commit 50978bf706
21 changed files with 822 additions and 19 deletions

View File

@ -1,19 +1,20 @@
# Summary
- [How to build the compiler and run what you built](./chap-010-how-to-build-and-run.md)
- [Using the compiler testing framework](./chap-020-running-tests.md)
- [Walkthrough: a typical contribution](./chap-030-walkthrough.md)
- [Conventions used in the compiler](./chap-040-compiler-conventions.md)
- [The parser](./chap-050-the-parser.md)
- [Macro expansion](./chap-060-macro-expansion.md)
- [Name resolution](./chap-070-name-resolution.md)
- [HIR lowering](./chap-080-hir-lowering.md)
- [Representing types (`ty` module in depth)](./chap-090-ty.md)
- [Type inference](./chap-100-type-inference.md)
- [Trait resolution](./chap-110-trait-resolution.md)
- [Type checking](./chap-120-type-checking.md)
- [MIR construction](./chap-130-mir-construction.md)
- [MIR borrowck](./chap-140-mir-borrowck.md)
- [MIR optimizations](./chap-150-mir-optimizations.md)
- [trans: generating LLVM IR](./chap-160-trans.md)
- [About this guide](./about-this-guide.md)
- [How to build the compiler and run what you built](./how-to-build-and-run.md)
- [Using the compiler testing framework](./running-tests.md)
- [Walkthrough: a typical contribution](./walkthrough.md)
- [High-level overview of the compiler source](./high-level-overview.md)
- [The parser](./the-parser.md)
- [Macro expansion](./macro-expansion.md)
- [Name resolution](./name-resolution.md)
- [HIR lowering](./hir-lowering.md)
- [The `ty` module: representing types](./ty.md)
- [Type inference](./type-inference.md)
- [Trait resolution](./trait-resolution.md)
- [Type checking](./type-checking.md)
- [MIR construction](./mir-construction.md)
- [MIR borrowck](./mir-borrowck.md)
- [MIR optimizations](./mir-optimizations.md)
- [trans: generating LLVM IR](./trans.md)
- [Glossary](./glossary.md)

14
src/about-this-guide.md Normal file
View File

@ -0,0 +1,14 @@
# About this guide
This guide is meant to help document how rustc -- the Rust compiler --
works, as well as to help new contributors get involved in rustc
development. It is not meant to replace code documentation -- each
chapter gives only high-level details, the kinds of things that
(ideally) don't change frequently.
The guide itself is of course open source as well, and the sources can
be found at [the GitHub repository]. If you find any mistakes in the
guide, please file an issue about it -- or, even better, open a PR
with a correction!
[the GitHub repository]: https://github.com/rust-lang-nursery/rustc-guide/

View File

@ -1 +0,0 @@
# Conventions used in the compiler

View File

@ -1 +0,0 @@
# Representing types (`ty` module in depth)

View File

@ -1 +0,0 @@
# Trait resolution

141
src/high-level-overview.md Normal file
View File

@ -0,0 +1,141 @@
# High-level overview of the compiler source
## Crate structure
The main Rust repository consists of a `src` directory, under which
there live many crates. These crates contain the sources for the
standard library and the compiler. This document, of course, focuses
on the latter.
Rustc consists of a number of crates, including `syntax`,
`rustc`, `rustc_back`, `rustc_trans`, `rustc_driver`, and
many more. The source for each crate can be found in a directory
like `src/libXXX`, where `XXX` is the crate name.
(NB. The names and divisions of these crates are not set in
stone and may change over time -- for the time being, we tend towards
a finer-grained division to help with compilation time, though as
incremental improves that may change.)
The dependency structure of these crates is roughly a diamond:
```
rustc_driver
/ | \
/ | \
/ | \
/ v \
rustc_trans rustc_borrowck ... rustc_metadata
\ | /
\ | /
\ | /
\ v /
rustc
|
v
syntax
/ \
/ \
syntax_pos syntax_ext
```
The `rustc_driver` crate, at the top of this lattice, is effectively
the "main" function for the rust compiler. It doesn't have much "real
code", but instead ties together all of the code defined in the other
crates and defines the overall flow of execution. (As we transition
more and more to the [query model](ty/maps/README.md), however, the
"flow" of compilation is becoming less centrally defined.)
At the other extreme, the `rustc` crate defines the common and
pervasive data structures that all the rest of the compiler uses
(e.g., how to represent types, traits, and the program itself). It
also contains some amount of the compiler itself, although that is
relatively limited.
Finally, all the crates in the bulge in the middle define the bulk of
the compiler -- they all depend on `rustc`, so that they can make use
of the various types defined there, and they export public routines
that `rustc_driver` will invoke as needed (more and more, what these
crates export are "query definitions", but those are covered later
on).
Below `rustc` lie various crates that make up the parser and error
reporting mechanism. For historical reasons, these crates do not have
the `rustc_` prefix, but they are really just as much an internal part
of the compiler and not intended to be stable (though they do wind up
getting used by some crates in the wild; a practice we hope to
gradually phase out).
Each crate has a `README.md` file that describes, at a high-level,
what it contains, and tries to give some kind of explanation (some
better than others).
## The main stages of compilation
The Rust compiler is in a bit of transition right now. It used to be a
purely "pass-based" compiler, where we ran a number of passes over the
entire program, and each did a particular check of transformation. We
are gradually replacing this pass-based code with an alternative setup
based on on-demand **queries**. In the query-model, we work backwards,
executing a *query* that expresses our ultimate goal (e.g., "compile
this crate"). This query in turn may make other queries (e.g., "get me
a list of all modules in the crate"). Those queries make other queries
that ultimately bottom out in the base operations, like parsing the
input, running the type-checker, and so forth. This on-demand model
permits us to do exciting things like only do the minimal amount of
work needed to type-check a single function. It also helps with
incremental compilation. (For details on defining queries, check out
`src/librustc/ty/maps/README.md`.)
Regardless of the general setup, the basic operations that the
compiler must perform are the same. The only thing that changes is
whether these operations are invoked front-to-back, or on demand. In
order to compile a Rust crate, these are the general steps that we
take:
1. **Parsing input**
- this processes the `.rs` files and produces the AST ("abstract syntax tree")
- the AST is defined in `syntax/ast.rs`. It is intended to match the lexical
syntax of the Rust language quite closely.
2. **Name resolution, macro expansion, and configuration**
- once parsing is complete, we process the AST recursively, resolving paths
and expanding macros. This same process also processes `#[cfg]` nodes, and hence
may strip things out of the AST as well.
3. **Lowering to HIR**
- Once name resolution completes, we convert the AST into the HIR,
or "high-level IR". The HIR is defined in `src/librustc/hir/`; that module also includes
the lowering code.
- The HIR is a lightly desugared variant of the AST. It is more processed than the
AST and more suitable for the analyses that follow. It is **not** required to match
the syntax of the Rust language.
- As a simple example, in the **AST**, we preserve the parentheses
that the user wrote, so `((1 + 2) + 3)` and `1 + 2 + 3` parse
into distinct trees, even though they are equivalent. In the
HIR, however, parentheses nodes are removed, and those two
expressions are represented in the same way.
3. **Type-checking and subsequent analyses**
- An important step in processing the HIR is to perform type
checking. This process assigns types to every HIR expression,
for example, and also is responsible for resolving some
"type-dependent" paths, such as field accesses (`x.f` -- we
can't know what field `f` is being accessed until we know the
type of `x`) and associated type references (`T::Item` -- we
can't know what type `Item` is until we know what `T` is).
- Type checking creates "side-tables" (`TypeckTables`) that include
the types of expressions, the way to resolve methods, and so forth.
- After type-checking, we can do other analyses, such as privacy checking.
4. **Lowering to MIR and post-processing**
- Once type-checking is done, we can lower the HIR into MIR ("middle IR"), which
is a **very** desugared version of Rust, well suited to the borrowck but also
certain high-level optimizations.
5. **Translation to LLVM and LLVM optimizations**
- From MIR, we can produce LLVM IR.
- LLVM then runs its various optimizations, which produces a number of `.o` files
(one for each "codegen unit").
6. **Linking**
- Finally, those `.o` files are linked together.
The first thing you may wonder if

485
src/trait-resolution.md Normal file
View File

@ -0,0 +1,485 @@
# Trait resolution
This document describes the general process and points out some non-obvious
things.
**WARNING:** This material was moved verbatim from a rustc README, so
it may not "fit" the style of the guide until it is adapted.
## Major concepts
Trait resolution is the process of pairing up an impl with each
reference to a trait. So, for example, if there is a generic function like:
```rust
fn clone_slice<T:Clone>(x: &[T]) -> Vec<T> { /*...*/ }
```
and then a call to that function:
```rust
let v: Vec<isize> = clone_slice(&[1, 2, 3])
```
it is the job of trait resolution to figure out (in which case)
whether there exists an impl of `isize : Clone`
Note that in some cases, like generic functions, we may not be able to
find a specific impl, but we can figure out that the caller must
provide an impl. To see what I mean, consider the body of `clone_slice`:
```rust
fn clone_slice<T:Clone>(x: &[T]) -> Vec<T> {
let mut v = Vec::new();
for e in &x {
v.push((*e).clone()); // (*)
}
}
```
The line marked `(*)` is only legal if `T` (the type of `*e`)
implements the `Clone` trait. Naturally, since we don't know what `T`
is, we can't find the specific impl; but based on the bound `T:Clone`,
we can say that there exists an impl which the caller must provide.
We use the term *obligation* to refer to a trait reference in need of
an impl.
## Overview
Trait resolution consists of three major parts:
- SELECTION: Deciding how to resolve a specific obligation. For
example, selection might decide that a specific obligation can be
resolved by employing an impl which matches the self type, or by
using a parameter bound. In the case of an impl, Selecting one
obligation can create *nested obligations* because of where clauses
on the impl itself. It may also require evaluating those nested
obligations to resolve ambiguities.
- FULFILLMENT: The fulfillment code is what tracks that obligations
are completely fulfilled. Basically it is a worklist of obligations
to be selected: once selection is successful, the obligation is
removed from the worklist and any nested obligations are enqueued.
- COHERENCE: The coherence checks are intended to ensure that there
are never overlapping impls, where two impls could be used with
equal precedence.
## Selection
Selection is the process of deciding whether an obligation can be
resolved and, if so, how it is to be resolved (via impl, where clause, etc).
The main interface is the `select()` function, which takes an obligation
and returns a `SelectionResult`. There are three possible outcomes:
- `Ok(Some(selection))` -- yes, the obligation can be resolved, and
`selection` indicates how. If the impl was resolved via an impl,
then `selection` may also indicate nested obligations that are required
by the impl.
- `Ok(None)` -- we are not yet sure whether the obligation can be
resolved or not. This happens most commonly when the obligation
contains unbound type variables.
- `Err(err)` -- the obligation definitely cannot be resolved due to a
type error, or because there are no impls that could possibly apply,
etc.
The basic algorithm for selection is broken into two big phases:
candidate assembly and confirmation.
### Candidate assembly
Searches for impls/where-clauses/etc that might
possibly be used to satisfy the obligation. Each of those is called
a candidate. To avoid ambiguity, we want to find exactly one
candidate that is definitively applicable. In some cases, we may not
know whether an impl/where-clause applies or not -- this occurs when
the obligation contains unbound inference variables.
The basic idea for candidate assembly is to do a first pass in which
we identify all possible candidates. During this pass, all that we do
is try and unify the type parameters. (In particular, we ignore any
nested where clauses.) Presuming that this unification succeeds, the
impl is added as a candidate.
Once this first pass is done, we can examine the set of candidates. If
it is a singleton set, then we are done: this is the only impl in
scope that could possibly apply. Otherwise, we can winnow down the set
of candidates by using where clauses and other conditions. If this
reduced set yields a single, unambiguous entry, we're good to go,
otherwise the result is considered ambiguous.
#### The basic process: Inferring based on the impls we see
This process is easier if we work through some examples. Consider
the following trait:
```rust
trait Convert<Target> {
fn convert(&self) -> Target;
}
```
This trait just has one method. It's about as simple as it gets. It
converts from the (implicit) `Self` type to the `Target` type. If we
wanted to permit conversion between `isize` and `usize`, we might
implement `Convert` like so:
```rust
impl Convert<usize> for isize { /*...*/ } // isize -> usize
impl Convert<isize> for usize { /*...*/ } // usize -> isize
```
Now imagine there is some code like the following:
```rust
let x: isize = ...;
let y = x.convert();
```
The call to convert will generate a trait reference `Convert<$Y> for
isize`, where `$Y` is the type variable representing the type of
`y`. When we match this against the two impls we can see, we will find
that only one remains: `Convert<usize> for isize`. Therefore, we can
select this impl, which will cause the type of `$Y` to be unified to
`usize`. (Note that while assembling candidates, we do the initial
unifications in a transaction, so that they don't affect one another.)
There are tests to this effect in src/test/run-pass:
traits-multidispatch-infer-convert-source-and-target.rs
traits-multidispatch-infer-convert-target.rs
#### Winnowing: Resolving ambiguities
But what happens if there are multiple impls where all the types
unify? Consider this example:
```rust
trait Get {
fn get(&self) -> Self;
}
impl<T:Copy> Get for T {
fn get(&self) -> T { *self }
}
impl<T:Get> Get for Box<T> {
fn get(&self) -> Box<T> { box get_it(&**self) }
}
```
What happens when we invoke `get_it(&box 1_u16)`, for example? In this
case, the `Self` type is `Box<u16>` -- that unifies with both impls,
because the first applies to all types, and the second to all
boxes. In the olden days we'd have called this ambiguous. But what we
do now is do a second *winnowing* pass that considers where clauses
and attempts to remove candidates -- in this case, the first impl only
applies if `Box<u16> : Copy`, which doesn't hold. After winnowing,
then, we are left with just one candidate, so we can proceed. There is
a test of this in `src/test/run-pass/traits-conditional-dispatch.rs`.
#### Matching
The subroutines that decide whether a particular impl/where-clause/etc
applies to a particular obligation. At the moment, this amounts to
unifying the self types, but in the future we may also recursively
consider some of the nested obligations, in the case of an impl.
#### Lifetimes and selection
Because of how that lifetime inference works, it is not possible to
give back immediate feedback as to whether a unification or subtype
relationship between lifetimes holds or not. Therefore, lifetime
matching is *not* considered during selection. This is reflected in
the fact that subregion assignment is infallible. This may yield
lifetime constraints that will later be found to be in error (in
contrast, the non-lifetime-constraints have already been checked
during selection and can never cause an error, though naturally they
may lead to other errors downstream).
#### Where clauses
Besides an impl, the other major way to resolve an obligation is via a
where clause. The selection process is always given a *parameter
environment* which contains a list of where clauses, which are
basically obligations that can assume are satisfiable. We will iterate
over that list and check whether our current obligation can be found
in that list, and if so it is considered satisfied. More precisely, we
want to check whether there is a where-clause obligation that is for
the same trait (or some subtrait) and for which the self types match,
using the definition of *matching* given above.
Consider this simple example:
```rust
trait A1 { /*...*/ }
trait A2 : A1 { /*...*/ }
trait B { /*...*/ }
fn foo<X:A2+B> { /*...*/ }
```
Clearly we can use methods offered by `A1`, `A2`, or `B` within the
body of `foo`. In each case, that will incur an obligation like `X :
A1` or `X : A2`. The parameter environment will contain two
where-clauses, `X : A2` and `X : B`. For each obligation, then, we
search this list of where-clauses. To resolve an obligation `X:A1`,
we would note that `X:A2` implies that `X:A1`.
### Confirmation
Confirmation unifies the output type parameters of the trait with the
values found in the obligation, possibly yielding a type error. If we
return to our example of the `Convert` trait from the previous
section, confirmation is where an error would be reported, because the
impl specified that `T` would be `usize`, but the obligation reported
`char`. Hence the result of selection would be an error.
### Selection during translation
During type checking, we do not store the results of trait selection.
We simply wish to verify that trait selection will succeed. Then
later, at trans time, when we have all concrete types available, we
can repeat the trait selection. In this case, we do not consider any
where-clauses to be in scope. We know that therefore each resolution
will resolve to a particular impl.
One interesting twist has to do with nested obligations. In general, in trans,
we only need to do a "shallow" selection for an obligation. That is, we wish to
identify which impl applies, but we do not (yet) need to decide how to select
any nested obligations. Nonetheless, we *do* currently do a complete resolution,
and that is because it can sometimes inform the results of type inference. That is,
we do not have the full substitutions in terms of the type variables of the impl available
to us, so we must run trait selection to figure everything out.
Here is an example:
```rust
trait Foo { /*...*/ }
impl<U,T:Bar<U>> Foo for Vec<T> { /*...*/ }
impl Bar<usize> for isize { /*...*/ }
```
After one shallow round of selection for an obligation like `Vec<isize>
: Foo`, we would know which impl we want, and we would know that
`T=isize`, but we do not know the type of `U`. We must select the
nested obligation `isize : Bar<U>` to find out that `U=usize`.
It would be good to only do *just as much* nested resolution as
necessary. Currently, though, we just do a full resolution.
# Higher-ranked trait bounds
One of the more subtle concepts at work are *higher-ranked trait
bounds*. An example of such a bound is `for<'a> MyTrait<&'a isize>`.
Let's walk through how selection on higher-ranked trait references
works.
## Basic matching and skolemization leaks
Let's walk through the test `compile-fail/hrtb-just-for-static.rs` to see
how it works. The test starts with the trait `Foo`:
```rust
trait Foo<X> {
fn foo(&self, x: X) { }
}
```
Let's say we have a function `want_hrtb` that wants a type which
implements `Foo<&'a isize>` for any `'a`:
```rust
fn want_hrtb<T>() where T : for<'a> Foo<&'a isize> { ... }
```
Now we have a struct `AnyInt` that implements `Foo<&'a isize>` for any
`'a`:
```rust
struct AnyInt;
impl<'a> Foo<&'a isize> for AnyInt { }
```
And the question is, does `AnyInt : for<'a> Foo<&'a isize>`? We want the
answer to be yes. The algorithm for figuring it out is closely related
to the subtyping for higher-ranked types (which is described in
`middle::infer::higher_ranked::doc`, but also in a [paper by SPJ] that
I recommend you read).
1. Skolemize the obligation.
2. Match the impl against the skolemized obligation.
3. Check for skolemization leaks.
[paper by SPJ]: http://research.microsoft.com/en-us/um/people/simonpj/papers/higher-rank/
So let's work through our example. The first thing we would do is to
skolemize the obligation, yielding `AnyInt : Foo<&'0 isize>` (here `'0`
represents skolemized region #0). Note that now have no quantifiers;
in terms of the compiler type, this changes from a `ty::PolyTraitRef`
to a `TraitRef`. We would then create the `TraitRef` from the impl,
using fresh variables for it's bound regions (and thus getting
`Foo<&'$a isize>`, where `'$a` is the inference variable for `'a`). Next
we relate the two trait refs, yielding a graph with the constraint
that `'0 == '$a`. Finally, we check for skolemization "leaks" -- a
leak is basically any attempt to relate a skolemized region to another
skolemized region, or to any region that pre-existed the impl match.
The leak check is done by searching from the skolemized region to find
the set of regions that it is related to in any way. This is called
the "taint" set. To pass the check, that set must consist *solely* of
itself and region variables from the impl. If the taint set includes
any other region, then the match is a failure. In this case, the taint
set for `'0` is `{'0, '$a}`, and hence the check will succeed.
Let's consider a failure case. Imagine we also have a struct
```rust
struct StaticInt;
impl Foo<&'static isize> for StaticInt;
```
We want the obligation `StaticInt : for<'a> Foo<&'a isize>` to be
considered unsatisfied. The check begins just as before. `'a` is
skolemized to `'0` and the impl trait reference is instantiated to
`Foo<&'static isize>`. When we relate those two, we get a constraint
like `'static == '0`. This means that the taint set for `'0` is `{'0,
'static}`, which fails the leak check.
## Higher-ranked trait obligations
Once the basic matching is done, we get to another interesting topic:
how to deal with impl obligations. I'll work through a simple example
here. Imagine we have the traits `Foo` and `Bar` and an associated impl:
```rust
trait Foo<X> {
fn foo(&self, x: X) { }
}
trait Bar<X> {
fn bar(&self, x: X) { }
}
impl<X,F> Foo<X> for F
where F : Bar<X>
{
}
```
Now let's say we have a obligation `for<'a> Foo<&'a isize>` and we match
this impl. What obligation is generated as a result? We want to get
`for<'a> Bar<&'a isize>`, but how does that happen?
After the matching, we are in a position where we have a skolemized
substitution like `X => &'0 isize`. If we apply this substitution to the
impl obligations, we get `F : Bar<&'0 isize>`. Obviously this is not
directly usable because the skolemized region `'0` cannot leak out of
our computation.
What we do is to create an inverse mapping from the taint set of `'0`
back to the original bound region (`'a`, here) that `'0` resulted
from. (This is done in `higher_ranked::plug_leaks`). We know that the
leak check passed, so this taint set consists solely of the skolemized
region itself plus various intermediate region variables. We then walk
the trait-reference and convert every region in that taint set back to
a late-bound region, so in this case we'd wind up with `for<'a> F :
Bar<&'a isize>`.
# Caching and subtle considerations therewith
In general we attempt to cache the results of trait selection. This
is a somewhat complex process. Part of the reason for this is that we
want to be able to cache results even when all the types in the trait
reference are not fully known. In that case, it may happen that the
trait selection process is also influencing type variables, so we have
to be able to not only cache the *result* of the selection process,
but *replay* its effects on the type variables.
## An example
The high-level idea of how the cache works is that we first replace
all unbound inference variables with skolemized versions. Therefore,
if we had a trait reference `usize : Foo<$1>`, where `$n` is an unbound
inference variable, we might replace it with `usize : Foo<%0>`, where
`%n` is a skolemized type. We would then look this up in the cache.
If we found a hit, the hit would tell us the immediate next step to
take in the selection process: i.e., apply impl #22, or apply where
clause `X : Foo<Y>`. Let's say in this case there is no hit.
Therefore, we search through impls and where clauses and so forth, and
we come to the conclusion that the only possible impl is this one,
with def-id 22:
```rust
impl Foo<isize> for usize { ... } // Impl #22
```
We would then record in the cache `usize : Foo<%0> ==>
ImplCandidate(22)`. Next we would confirm `ImplCandidate(22)`, which
would (as a side-effect) unify `$1` with `isize`.
Now, at some later time, we might come along and see a `usize :
Foo<$3>`. When skolemized, this would yield `usize : Foo<%0>`, just as
before, and hence the cache lookup would succeed, yielding
`ImplCandidate(22)`. We would confirm `ImplCandidate(22)` which would
(as a side-effect) unify `$3` with `isize`.
## Where clauses and the local vs global cache
One subtle interaction is that the results of trait lookup will vary
depending on what where clauses are in scope. Therefore, we actually
have *two* caches, a local and a global cache. The local cache is
attached to the `ParamEnv` and the global cache attached to the
`tcx`. We use the local cache whenever the result might depend on the
where clauses that are in scope. The determination of which cache to
use is done by the method `pick_candidate_cache` in `select.rs`. At
the moment, we use a very simple, conservative rule: if there are any
where-clauses in scope, then we use the local cache. We used to try
and draw finer-grained distinctions, but that led to a serious of
annoying and weird bugs like #22019 and #18290. This simple rule seems
to be pretty clearly safe and also still retains a very high hit rate
(~95% when compiling rustc).
# Specialization
Defined in the `specialize` module.
The basic strategy is to build up a *specialization graph* during
coherence checking. Insertion into the graph locates the right place
to put an impl in the specialization hierarchy; if there is no right
place (due to partial overlap but no containment), you get an overlap
error. Specialization is consulted when selecting an impl (of course),
and the graph is consulted when propagating defaults down the
specialization hierarchy.
You might expect that the specialization graph would be used during
selection -- i.e., when actually performing specialization. This is
not done for two reasons:
- It's merely an optimization: given a set of candidates that apply,
we can determine the most specialized one by comparing them directly
for specialization, rather than consulting the graph. Given that we
also cache the results of selection, the benefit of this
optimization is questionable.
- To build the specialization graph in the first place, we need to use
selection (because we need to determine whether one impl specializes
another). Dealing with this reentrancy would require some additional
mode switch for selection. Given that there seems to be no strong
reason to use the graph anyway, we stick with a simpler approach in
selection, and use the graph only for propagating default
implementations.
Trait impl selection can succeed even when multiple impls can apply,
as long as they are part of the same specialization family. In that
case, it returns a *single* impl on success -- this is the most
specialized impl *known* to apply. However, if there are any inference
variables in play, the returned impl may not be the actual impl we
will use at trans time. Thus, we take special care to avoid projecting
associated types unless either (1) the associated type does not use
`default` and thus cannot be overridden or (2) all input types are
known concretely.

165
src/ty.md Normal file
View File

@ -0,0 +1,165 @@
# The `ty` module: representing types
The `ty` module defines how the Rust compiler represents types
internally. It also defines the *typing context* (`tcx` or `TyCtxt`),
which is the central data structure in the compiler.
## The tcx and how it uses lifetimes
The `tcx` ("typing context") is the central data structure in the
compiler. It is the context that you use to perform all manner of
queries. The struct `TyCtxt` defines a reference to this shared context:
```rust
tcx: TyCtxt<'a, 'gcx, 'tcx>
// -- ---- ----
// | | |
// | | innermost arena lifetime (if any)
// | "global arena" lifetime
// lifetime of this reference
```
As you can see, the `TyCtxt` type takes three lifetime parameters.
These lifetimes are perhaps the most complex thing to understand about
the tcx. During Rust compilation, we allocate most of our memory in
**arenas**, which are basically pools of memory that get freed all at
once. When you see a reference with a lifetime like `'tcx` or `'gcx`,
you know that it refers to arena-allocated data (or data that lives as
long as the arenas, anyhow).
We use two distinct levels of arenas. The outer level is the "global
arena". This arena lasts for the entire compilation: so anything you
allocate in there is only freed once compilation is basically over
(actually, when we shift to executing LLVM).
To reduce peak memory usage, when we do type inference, we also use an
inner level of arena. These arenas get thrown away once type inference
is over. This is done because type inference generates a lot of
"throw-away" types that are not particularly interesting after type
inference completes, so keeping around those allocations would be
wasteful.
Often, we wish to write code that explicitly asserts that it is not
taking place during inference. In that case, there is no "local"
arena, and all the types that you can access are allocated in the
global arena. To express this, the idea is to use the same lifetime
for the `'gcx` and `'tcx` parameters of `TyCtxt`. Just to be a touch
confusing, we tend to use the name `'tcx` in such contexts. Here is an
example:
```rust
fn not_in_inference<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) {
// ---- ----
// Using the same lifetime here asserts
// that the innermost arena accessible through
// this reference *is* the global arena.
}
```
In contrast, if we want to code that can be usable during type inference, then you
need to declare a distinct `'gcx` and `'tcx` lifetime parameter:
```rust
fn maybe_in_inference<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>, def_id: DefId) {
// ---- ----
// Using different lifetimes here means that
// the innermost arena *may* be distinct
// from the global arena (but doesn't have to be).
}
```
### Allocating and working with types
Rust types are represented using the `Ty<'tcx>` defined in the `ty`
module (not to be confused with the `Ty` struct from [the HIR]). This
is in fact a simple type alias for a reference with `'tcx` lifetime:
```rust
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
```
[the HIR]: ../hir/README.md
You can basically ignore the `TyS` struct -- you will basically never
access it explicitly. We always pass it by reference using the
`Ty<'tcx>` alias -- the only exception I think is to define inherent
methods on types. Instances of `TyS` are only ever allocated in one of
the rustc arenas (never e.g. on the stack).
One common operation on types is to **match** and see what kinds of
types they are. This is done by doing `match ty.sty`, sort of like this:
```rust
fn test_type<'tcx>(ty: Ty<'tcx>) {
match ty.sty {
ty::TyArray(elem_ty, len) => { ... }
...
}
}
```
The `sty` field (the origin of this name is unclear to me; perhaps
structural type?) is of type `TypeVariants<'tcx>`, which is an enum
defining all of the different kinds of types in the compiler.
> NB: inspecting the `sty` field on types during type inference can be
> risky, as there may be inference variables and other things to
> consider, or sometimes types are not yet known that will become
> known later.).
To allocate a new type, you can use the various `mk_` methods defined
on the `tcx`. These have names that correpond mostly to the various kinds
of type variants. For example:
```rust
let array_ty = tcx.mk_array(elem_ty, len * 2);
```
These methods all return a `Ty<'tcx>` -- note that the lifetime you
get back is the lifetime of the innermost arena that this `tcx` has
access to. In fact, types are always canonicalized and interned (so we
never allocate exactly the same type twice) and are always allocated
in the outermost arena where they can be (so, if they do not contain
any inference variables or other "temporary" types, they will be
allocated in the global arena). However, the lifetime `'tcx` is always
a safe approximation, so that is what you get back.
> NB. Because types are interned, it is possible to compare them for
> equality efficiently using `==` -- however, this is almost never what
> you want to do unless you happen to be hashing and looking for
> duplicates. This is because often in Rust there are multiple ways to
> represent the same type, particularly once inference is involved. If
> you are going to be testing for type equality, you probably need to
> start looking into the inference code to do it right.
You can also find various common types in the `tcx` itself by accessing
`tcx.types.bool`, `tcx.types.char`, etc (see `CommonTypes` for more).
### Beyond types: Other kinds of arena-allocated data structures
In addition to types, there are a number of other arena-allocated data
structures that you can allocate, and which are found in this
module. Here are a few examples:
- `Substs`, allocated with `mk_substs` -- this will intern a slice of types, often used to
specify the values to be substituted for generics (e.g., `HashMap<i32, u32>`
would be represented as a slice `&'tcx [tcx.types.i32, tcx.types.u32]`).
- `TraitRef`, typically passed by value -- a **trait reference**
consists of a reference to a trait along with its various type
parameters (including `Self`), like `i32: Display` (here, the def-id
would reference the `Display` trait, and the substs would contain
`i32`).
- `Predicate` defines something the trait system has to prove (see `traits` module).
### Import conventions
Although there is no hard and fast rule, the `ty` module tends to be used like so:
```rust
use ty::{self, Ty, TyCtxt};
```
In particular, since they are so common, the `Ty` and `TyCtxt` types
are imported directly. Other types are often referenced with an
explicit `ty::` prefix (e.g., `ty::TraitRef<'tcx>`). But some modules
choose to import a larger or smaller set of names explicitly.