msdfgen/main.cpp

901 lines
32 KiB
C++

/*
* MULTI-CHANNEL SIGNED DISTANCE FIELD GENERATOR v1.6 (2019-04-08) - standalone console program
* --------------------------------------------------------------------------------------------
* A utility by Viktor Chlumsky, (c) 2014 - 2019
*
*/
#ifdef MSDFGEN_STANDALONE
#define _USE_MATH_DEFINES
#include <cstdio>
#include <cmath>
#include <cstring>
#include "msdfgen.h"
#include "msdfgen-ext.h"
#ifdef _WIN32
#pragma warning(disable:4996)
#endif
#define LARGE_VALUE 1e240
using namespace msdfgen;
enum Format {
AUTO,
PNG,
BMP,
TIFF,
TEXT,
TEXT_FLOAT,
BINARY,
BINARY_FLOAT,
BINART_FLOAT_BE
};
static char toupper(char c) {
return c >= 'a' && c <= 'z' ? c-'a'+'A' : c;
}
static bool parseUnsigned(unsigned &value, const char *arg) {
static char c;
return sscanf(arg, "%u%c", &value, &c) == 1;
}
static bool parseUnsignedLL(unsigned long long &value, const char *arg) {
static char c;
return sscanf(arg, "%llu%c", &value, &c) == 1;
}
static bool parseUnsignedHex(unsigned &value, const char *arg) {
static char c;
return sscanf(arg, "%x%c", &value, &c) == 1;
}
static bool parseDouble(double &value, const char *arg) {
static char c;
return sscanf(arg, "%lf%c", &value, &c) == 1;
}
static bool parseUnicode(int &unicode, const char *arg) {
unsigned uuc;
if (parseUnsigned(uuc, arg)) {
unicode = uuc;
return true;
}
if (arg[0] == '0' && (arg[1] == 'x' || arg[1] == 'X') && parseUnsignedHex(uuc, arg+2)) {
unicode = uuc;
return true;
}
if (arg[0] == '\'' && arg[1] && arg[2] == '\'' && !arg[3]) {
unicode = arg[1];
return true;
}
return false;
}
static bool parseAngle(double &value, const char *arg) {
char c1, c2;
int result = sscanf(arg, "%lf%c%c", &value, &c1, &c2);
if (result == 1)
return true;
if (result == 2 && (c1 == 'd' || c1 == 'D')) {
value *= M_PI/180;
return true;
}
return false;
}
static void parseColoring(Shape &shape, const char *edgeAssignment) {
unsigned c = 0, e = 0;
if (shape.contours.size() < c) return;
Contour *contour = &shape.contours[c];
bool change = false;
bool clear = true;
for (const char *in = edgeAssignment; *in; ++in) {
switch (*in) {
case ',':
if (change)
++e;
if (clear)
while (e < contour->edges.size()) {
contour->edges[e]->color = WHITE;
++e;
}
++c, e = 0;
if (shape.contours.size() <= c) return;
contour = &shape.contours[c];
change = false;
clear = true;
break;
case '?':
clear = false;
break;
case 'C': case 'M': case 'W': case 'Y': case 'c': case 'm': case 'w': case 'y':
if (change) {
++e;
change = false;
}
if (e < contour->edges.size()) {
contour->edges[e]->color = EdgeColor(
(*in == 'C' || *in == 'c')*CYAN|
(*in == 'M' || *in == 'm')*MAGENTA|
(*in == 'Y' || *in == 'y')*YELLOW|
(*in == 'W' || *in == 'w')*WHITE);
change = true;
}
break;
}
}
}
template <int N>
static void invertColor(const BitmapRef<float, N> &bitmap) {
const float *end = bitmap.pixels+N*bitmap.width*bitmap.height;
for (float *p = bitmap.pixels; p < end; ++p)
*p = 1.f-*p;
}
static bool writeTextBitmap(FILE *file, const float *values, int cols, int rows) {
for (int row = 0; row < rows; ++row) {
for (int col = 0; col < cols; ++col) {
int v = clamp(int((*values++)*0x100), 0xff);
fprintf(file, col ? " %02X" : "%02X", v);
}
fprintf(file, "\n");
}
return true;
}
static bool writeTextBitmapFloat(FILE *file, const float *values, int cols, int rows) {
for (int row = 0; row < rows; ++row) {
for (int col = 0; col < cols; ++col) {
fprintf(file, col ? " %g" : "%g", *values++);
}
fprintf(file, "\n");
}
return true;
}
static bool writeBinBitmap(FILE *file, const float *values, int count) {
for (int pos = 0; pos < count; ++pos) {
unsigned char v = clamp(int((*values++)*0x100), 0xff);
fwrite(&v, 1, 1, file);
}
return true;
}
#ifdef __BIG_ENDIAN__
static bool writeBinBitmapFloatBE(FILE *file, const float *values, int count)
#else
static bool writeBinBitmapFloat(FILE *file, const float *values, int count)
#endif
{
return fwrite(values, sizeof(float), count, file) == count;
}
#ifdef __BIG_ENDIAN__
static bool writeBinBitmapFloat(FILE *file, const float *values, int count)
#else
static bool writeBinBitmapFloatBE(FILE *file, const float *values, int count)
#endif
{
for (int pos = 0; pos < count; ++pos) {
const unsigned char *b = reinterpret_cast<const unsigned char *>(values++);
for (int i = sizeof(float)-1; i >= 0; --i)
fwrite(b+i, 1, 1, file);
}
return true;
}
static bool cmpExtension(const char *path, const char *ext) {
for (const char *a = path+strlen(path)-1, *b = ext+strlen(ext)-1; b >= ext; --a, --b)
if (a < path || toupper(*a) != toupper(*b))
return false;
return true;
}
template <int N>
static const char * writeOutput(const BitmapConstRef<float, N> &bitmap, const char *filename, Format format) {
if (filename) {
if (format == AUTO) {
if (cmpExtension(filename, ".png")) format = PNG;
else if (cmpExtension(filename, ".bmp")) format = BMP;
else if (cmpExtension(filename, ".tif") || cmpExtension(filename, ".tiff")) format = TIFF;
else if (cmpExtension(filename, ".txt")) format = TEXT;
else if (cmpExtension(filename, ".bin")) format = BINARY;
else
return "Could not deduce format from output file name.";
}
switch (format) {
case PNG: return savePng(bitmap, filename) ? NULL : "Failed to write output PNG image.";
case BMP: return saveBmp(bitmap, filename) ? NULL : "Failed to write output BMP image.";
case TIFF: return saveTiff(bitmap, filename) ? NULL : "Failed to write output BMP image.";
case TEXT: case TEXT_FLOAT: {
FILE *file = fopen(filename, "w");
if (!file) return "Failed to write output text file.";
if (format == TEXT)
writeTextBitmap(file, bitmap.pixels, N*bitmap.width, bitmap.height);
else if (format == TEXT_FLOAT)
writeTextBitmapFloat(file, bitmap.pixels, N*bitmap.width, bitmap.height);
fclose(file);
return NULL;
}
case BINARY: case BINARY_FLOAT: case BINART_FLOAT_BE: {
FILE *file = fopen(filename, "wb");
if (!file) return "Failed to write output binary file.";
if (format == BINARY)
writeBinBitmap(file, bitmap.pixels, N*bitmap.width*bitmap.height);
else if (format == BINARY_FLOAT)
writeBinBitmapFloat(file, bitmap.pixels, N*bitmap.width*bitmap.height);
else if (format == BINART_FLOAT_BE)
writeBinBitmapFloatBE(file, bitmap.pixels, N*bitmap.width*bitmap.height);
fclose(file);
return NULL;
}
default:;
}
} else {
if (format == AUTO || format == TEXT)
writeTextBitmap(stdout, bitmap.pixels, N*bitmap.width, bitmap.height);
else if (format == TEXT_FLOAT)
writeTextBitmapFloat(stdout, bitmap.pixels, N*bitmap.width, bitmap.height);
else
return "Unsupported format for standard output.";
}
return NULL;
}
static const char *helpText =
"\n"
"Multi-channel signed distance field generator by Viktor Chlumsky v" MSDFGEN_VERSION "\n"
"---------------------------------------------------------------------\n"
" Usage: msdfgen"
#ifdef _WIN32
".exe"
#endif
" <mode> <input specification> <options>\n"
"\n"
"MODES\n"
" sdf - Generate conventional monochrome signed distance field.\n"
" psdf - Generate monochrome signed pseudo-distance field.\n"
" msdf - Generate multi-channel signed distance field. This is used by default if no mode is specified.\n"
" metrics - Report shape metrics only.\n"
"\n"
"INPUT SPECIFICATION\n"
" -defineshape <definition>\n"
"\tDefines input shape using the ad-hoc text definition.\n"
" -font <filename.ttf> <character code>\n"
"\tLoads a single glyph from the specified font file. Format of character code is '?', 63 or 0x3F.\n"
" -shapedesc <filename.txt>\n"
"\tLoads text shape description from a file.\n"
" -stdin\n"
"\tReads text shape description from the standard input.\n"
" -svg <filename.svg>\n"
"\tLoads the last vector path found in the specified SVG file.\n"
"\n"
"OPTIONS\n"
" -angle <angle>\n"
"\tSpecifies the minimum angle between adjacent edges to be considered a corner. Append D for degrees.\n"
" -ascale <x scale> <y scale>\n"
"\tSets the scale used to convert shape units to pixels asymmetrically.\n"
" -autoframe\n"
"\tAutomatically scales (unless specified) and translates the shape to fit.\n"
" -edgecolors <sequence>\n"
"\tOverrides automatic edge coloring with the specified color sequence.\n"
" -errorcorrection <threshold>\n"
"\tChanges the threshold used to detect and correct potential artifacts. 0 disables error correction.\n"
" -exportshape <filename.txt>\n"
"\tSaves the shape description into a text file that can be edited and loaded using -shapedesc.\n"
" -fillrule <nonzero / evenodd / positive / negative>\n"
"\tSets the fill rule for the scanline pass. Default is nonzero.\n"
" -format <png / bmp / tiff / text / textfloat / bin / binfloat / binfloatbe>\n"
"\tSpecifies the output format of the distance field. Otherwise it is chosen based on output file extension.\n"
" -guessorder\n"
"\tAttempts to detect if shape contours have the wrong winding and generates the SDF with the right one.\n"
" -help\n"
"\tDisplays this help.\n"
" -legacy\n"
"\tUses the original (legacy) distance field algorithms.\n"
" -nooverlap\n"
"\tDisables resolution of overlapping contours.\n"
" -noscanline\n"
"\tDisables the scanline pass, which corrects the distance field's signs according to the selected fill rule.\n"
" -o <filename>\n"
"\tSets the output file name. The default value is \"output.png\".\n"
" -printmetrics\n"
"\tPrints relevant metrics of the shape to the standard output.\n"
" -pxrange <range>\n"
"\tSets the width of the range between the lowest and highest signed distance in pixels.\n"
" -range <range>\n"
"\tSets the width of the range between the lowest and highest signed distance in shape units.\n"
" -reverseorder\n"
"\tGenerates the distance field as if shape vertices were in reverse order.\n"
" -scale <scale>\n"
"\tSets the scale used to convert shape units to pixels.\n"
" -seed <n>\n"
"\tSets the random seed for edge coloring heuristic.\n"
" -size <width> <height>\n"
"\tSets the dimensions of the output image.\n"
" -stdout\n"
"\tPrints the output instead of storing it in a file. Only text formats are supported.\n"
" -testrender <filename.png> <width> <height>\n"
"\tRenders an image preview using the generated distance field and saves it as a PNG file.\n"
" -testrendermulti <filename.png> <width> <height>\n"
"\tRenders an image preview without flattening the color channels.\n"
" -translate <x> <y>\n"
"\tSets the translation of the shape in shape units.\n"
" -yflip\n"
"\tInverts the Y axis in the output distance field. The default order is bottom to top.\n"
"\n";
int main(int argc, const char * const *argv) {
#define ABORT(msg) { puts(msg); return 1; }
// Parse command line arguments
enum {
NONE,
SVG,
FONT,
DESCRIPTION_ARG,
DESCRIPTION_STDIN,
DESCRIPTION_FILE
} inputType = NONE;
enum {
SINGLE,
PSEUDO,
MULTI,
METRICS
} mode = MULTI;
bool legacyMode = false;
bool overlapSupport = true;
bool scanlinePass = true;
FillRule fillRule = FILL_NONZERO;
Format format = AUTO;
const char *input = NULL;
const char *output = "output.png";
const char *shapeExport = NULL;
const char *testRender = NULL;
const char *testRenderMulti = NULL;
bool outputSpecified = false;
int unicode = 0;
int svgPathIndex = 0;
int width = 64, height = 64;
int testWidth = 0, testHeight = 0;
int testWidthM = 0, testHeightM = 0;
bool autoFrame = false;
enum {
RANGE_UNIT,
RANGE_PX
} rangeMode = RANGE_PX;
double range = 1;
double pxRange = 2;
Vector2 translate;
Vector2 scale = 1;
bool scaleSpecified = false;
double angleThreshold = 3;
double edgeThreshold = 1.001;
bool defEdgeAssignment = true;
const char *edgeAssignment = NULL;
bool yFlip = false;
bool printMetrics = false;
bool skipColoring = false;
enum {
KEEP,
REVERSE,
GUESS
} orientation = KEEP;
unsigned long long coloringSeed = 0;
int argPos = 1;
bool suggestHelp = false;
while (argPos < argc) {
const char *arg = argv[argPos];
#define ARG_CASE(s, p) if (!strcmp(arg, s) && argPos+(p) < argc)
#define ARG_MODE(s, m) if (!strcmp(arg, s)) { mode = m; ++argPos; continue; }
#define SET_FORMAT(fmt, ext) do { format = fmt; if (!outputSpecified) output = "output." ext; } while (false)
ARG_MODE("sdf", SINGLE)
ARG_MODE("psdf", PSEUDO)
ARG_MODE("msdf", MULTI)
ARG_MODE("metrics", METRICS)
ARG_CASE("-svg", 1) {
inputType = SVG;
input = argv[argPos+1];
argPos += 2;
continue;
}
ARG_CASE("-font", 2) {
inputType = FONT;
input = argv[argPos+1];
parseUnicode(unicode, argv[argPos+2]);
argPos += 3;
continue;
}
ARG_CASE("-defineshape", 1) {
inputType = DESCRIPTION_ARG;
input = argv[argPos+1];
argPos += 2;
continue;
}
ARG_CASE("-stdin", 0) {
inputType = DESCRIPTION_STDIN;
input = "stdin";
argPos += 1;
continue;
}
ARG_CASE("-shapedesc", 1) {
inputType = DESCRIPTION_FILE;
input = argv[argPos+1];
argPos += 2;
continue;
}
ARG_CASE("-o", 1) {
output = argv[argPos+1];
outputSpecified = true;
argPos += 2;
continue;
}
ARG_CASE("-stdout", 0) {
output = NULL;
argPos += 1;
continue;
}
ARG_CASE("-legacy", 0) {
legacyMode = true;
argPos += 1;
continue;
}
ARG_CASE("-nooverlap", 0) {
overlapSupport = false;
argPos += 1;
continue;
}
ARG_CASE("-noscanline", 0) {
scanlinePass = false;
argPos += 1;
continue;
}
ARG_CASE("-scanline", 0) {
scanlinePass = true;
argPos += 1;
continue;
}
ARG_CASE("-fillrule", 1) {
if (!strcmp(argv[argPos+1], "nonzero")) fillRule = FILL_NONZERO;
else if (!strcmp(argv[argPos+1], "evenodd") || !strcmp(argv[argPos+1], "odd")) fillRule = FILL_ODD;
else if (!strcmp(argv[argPos+1], "positive")) fillRule = FILL_POSITIVE;
else if (!strcmp(argv[argPos+1], "negative")) fillRule = FILL_NEGATIVE;
else
puts("Unknown fill rule specified.");
argPos += 2;
continue;
}
ARG_CASE("-format", 1) {
if (!strcmp(argv[argPos+1], "auto")) format = AUTO;
else if (!strcmp(argv[argPos+1], "png")) SET_FORMAT(PNG, "png");
else if (!strcmp(argv[argPos+1], "bmp")) SET_FORMAT(BMP, "bmp");
else if (!strcmp(argv[argPos+1], "tiff")) SET_FORMAT(TIFF, "tif");
else if (!strcmp(argv[argPos+1], "text") || !strcmp(argv[argPos+1], "txt")) SET_FORMAT(TEXT, "txt");
else if (!strcmp(argv[argPos+1], "textfloat") || !strcmp(argv[argPos+1], "txtfloat")) SET_FORMAT(TEXT_FLOAT, "txt");
else if (!strcmp(argv[argPos+1], "bin") || !strcmp(argv[argPos+1], "binary")) SET_FORMAT(BINARY, "bin");
else if (!strcmp(argv[argPos+1], "binfloat") || !strcmp(argv[argPos+1], "binfloatle")) SET_FORMAT(BINARY_FLOAT, "bin");
else if (!strcmp(argv[argPos+1], "binfloatbe")) SET_FORMAT(BINART_FLOAT_BE, "bin");
else
puts("Unknown format specified.");
argPos += 2;
continue;
}
ARG_CASE("-size", 2) {
unsigned w, h;
if (!parseUnsigned(w, argv[argPos+1]) || !parseUnsigned(h, argv[argPos+2]) || !w || !h)
ABORT("Invalid size arguments. Use -size <width> <height> with two positive integers.");
width = w, height = h;
argPos += 3;
continue;
}
ARG_CASE("-autoframe", 0) {
autoFrame = true;
argPos += 1;
continue;
}
ARG_CASE("-range", 1) {
double r;
if (!parseDouble(r, argv[argPos+1]) || r < 0)
ABORT("Invalid range argument. Use -range <range> with a positive real number.");
rangeMode = RANGE_UNIT;
range = r;
argPos += 2;
continue;
}
ARG_CASE("-pxrange", 1) {
double r;
if (!parseDouble(r, argv[argPos+1]) || r < 0)
ABORT("Invalid range argument. Use -pxrange <range> with a positive real number.");
rangeMode = RANGE_PX;
pxRange = r;
argPos += 2;
continue;
}
ARG_CASE("-scale", 1) {
double s;
if (!parseDouble(s, argv[argPos+1]) || s <= 0)
ABORT("Invalid scale argument. Use -scale <scale> with a positive real number.");
scale = s;
scaleSpecified = true;
argPos += 2;
continue;
}
ARG_CASE("-ascale", 2) {
double sx, sy;
if (!parseDouble(sx, argv[argPos+1]) || !parseDouble(sy, argv[argPos+2]) || sx <= 0 || sy <= 0)
ABORT("Invalid scale arguments. Use -ascale <x> <y> with two positive real numbers.");
scale.set(sx, sy);
scaleSpecified = true;
argPos += 3;
continue;
}
ARG_CASE("-translate", 2) {
double tx, ty;
if (!parseDouble(tx, argv[argPos+1]) || !parseDouble(ty, argv[argPos+2]))
ABORT("Invalid translate arguments. Use -translate <x> <y> with two real numbers.");
translate.set(tx, ty);
argPos += 3;
continue;
}
ARG_CASE("-angle", 1) {
double at;
if (!parseAngle(at, argv[argPos+1]))
ABORT("Invalid angle threshold. Use -angle <min angle> with a positive real number less than PI or a value in degrees followed by 'd' below 180d.");
angleThreshold = at;
argPos += 2;
continue;
}
ARG_CASE("-errorcorrection", 1) {
double et;
if (!parseDouble(et, argv[argPos+1]) || et < 0)
ABORT("Invalid error correction threshold. Use -errorcorrection <threshold> with a real number larger or equal to 1.");
edgeThreshold = et;
argPos += 2;
continue;
}
ARG_CASE("-edgecolors", 1) {
static const char *allowed = " ?,cmyCMY";
for (int i = 0; argv[argPos+1][i]; ++i) {
for (int j = 0; allowed[j]; ++j)
if (argv[argPos+1][i] == allowed[j])
goto ROLL_ARG;
ABORT("Invalid edge coloring sequence. Use -assign <color sequence> with only the colors C, M, and Y. Separate contours by commas and use ? to keep the default assigment for a contour.");
ROLL_ARG:;
}
edgeAssignment = argv[argPos+1];
argPos += 2;
continue;
}
ARG_CASE("-exportshape", 1) {
shapeExport = argv[argPos+1];
argPos += 2;
continue;
}
ARG_CASE("-testrender", 3) {
unsigned w, h;
if (!parseUnsigned(w, argv[argPos+2]) || !parseUnsigned(h, argv[argPos+3]) || !w || !h)
ABORT("Invalid arguments for test render. Use -testrender <output.png> <width> <height>.");
testRender = argv[argPos+1];
testWidth = w, testHeight = h;
argPos += 4;
continue;
}
ARG_CASE("-testrendermulti", 3) {
unsigned w, h;
if (!parseUnsigned(w, argv[argPos+2]) || !parseUnsigned(h, argv[argPos+3]) || !w || !h)
ABORT("Invalid arguments for test render. Use -testrendermulti <output.png> <width> <height>.");
testRenderMulti = argv[argPos+1];
testWidthM = w, testHeightM = h;
argPos += 4;
continue;
}
ARG_CASE("-yflip", 0) {
yFlip = true;
argPos += 1;
continue;
}
ARG_CASE("-printmetrics", 0) {
printMetrics = true;
argPos += 1;
continue;
}
ARG_CASE("-keeporder", 0) {
orientation = KEEP;
argPos += 1;
continue;
}
ARG_CASE("-reverseorder", 0) {
orientation = REVERSE;
argPos += 1;
continue;
}
ARG_CASE("-guessorder", 0) {
orientation = GUESS;
argPos += 1;
continue;
}
ARG_CASE("-seed", 1) {
if (!parseUnsignedLL(coloringSeed, argv[argPos+1]))
ABORT("Invalid seed. Use -seed <N> with N being a non-negative integer.");
argPos += 2;
continue;
}
ARG_CASE("-help", 0)
ABORT(helpText);
printf("Unknown setting or insufficient parameters: %s\n", arg);
suggestHelp = true;
++argPos;
}
if (suggestHelp)
printf("Use -help for more information.\n");
// Load input
Vector2 svgDims;
double glyphAdvance = 0;
if (!inputType || !input)
ABORT("No input specified! Use either -svg <file.svg> or -font <file.ttf/otf> <character code>, or see -help.");
Shape shape;
switch (inputType) {
case SVG: {
if (!loadSvgShape(shape, input, svgPathIndex, &svgDims))
ABORT("Failed to load shape from SVG file.");
break;
}
case FONT: {
if (!unicode)
ABORT("No character specified! Use -font <file.ttf/otf> <character code>. Character code can be a number (65, 0x41), or a character in apostrophes ('A').");
FreetypeHandle *ft = initializeFreetype();
if (!ft) return -1;
FontHandle *font = loadFont(ft, input);
if (!font) {
deinitializeFreetype(ft);
ABORT("Failed to load font file.");
}
if (!loadGlyph(shape, font, unicode, &glyphAdvance)) {
destroyFont(font);
deinitializeFreetype(ft);
ABORT("Failed to load glyph from font file.");
}
destroyFont(font);
deinitializeFreetype(ft);
break;
}
case DESCRIPTION_ARG: {
if (!readShapeDescription(input, shape, &skipColoring))
ABORT("Parse error in shape description.");
break;
}
case DESCRIPTION_STDIN: {
if (!readShapeDescription(stdin, shape, &skipColoring))
ABORT("Parse error in shape description.");
break;
}
case DESCRIPTION_FILE: {
FILE *file = fopen(input, "r");
if (!file)
ABORT("Failed to load shape description file.");
if (!readShapeDescription(file, shape, &skipColoring))
ABORT("Parse error in shape description.");
fclose(file);
break;
}
default:;
}
// Validate and normalize shape
if (!shape.validate())
ABORT("The geometry of the loaded shape is invalid.");
shape.normalize();
if (yFlip)
shape.inverseYAxis = !shape.inverseYAxis;
double avgScale = .5*(scale.x+scale.y);
struct {
double l, b, r, t;
} bounds = {
LARGE_VALUE, LARGE_VALUE, -LARGE_VALUE, -LARGE_VALUE
};
if (autoFrame || mode == METRICS || printMetrics || orientation == GUESS)
shape.bounds(bounds.l, bounds.b, bounds.r, bounds.t);
// Auto-frame
if (autoFrame) {
double l = bounds.l, b = bounds.b, r = bounds.r, t = bounds.t;
Vector2 frame(width, height);
if (rangeMode == RANGE_UNIT)
l -= .5*range, b -= .5*range, r += .5*range, t += .5*range;
else if (!scaleSpecified)
frame -= pxRange;
if (l >= r || b >= t)
l = 0, b = 0, r = 1, t = 1;
if (frame.x <= 0 || frame.y <= 0)
ABORT("Cannot fit the specified pixel range.");
Vector2 dims(r-l, t-b);
if (scaleSpecified)
translate = .5*(frame/scale-dims)-Vector2(l, b);
else {
if (dims.x*frame.y < dims.y*frame.x) {
translate.set(.5*(frame.x/frame.y*dims.y-dims.x)-l, -b);
scale = avgScale = frame.y/dims.y;
} else {
translate.set(-l, .5*(frame.y/frame.x*dims.x-dims.y)-b);
scale = avgScale = frame.x/dims.x;
}
}
if (rangeMode == RANGE_PX && !scaleSpecified)
translate += .5*pxRange/scale;
}
if (rangeMode == RANGE_PX)
range = pxRange/min(scale.x, scale.y);
// Print metrics
if (mode == METRICS || printMetrics) {
FILE *out = stdout;
if (mode == METRICS && outputSpecified)
out = fopen(output, "w");
if (!out)
ABORT("Failed to write output file.");
if (shape.inverseYAxis)
fprintf(out, "inverseY = true\n");
if (bounds.r >= bounds.l && bounds.t >= bounds.b)
fprintf(out, "bounds = %.12g, %.12g, %.12g, %.12g\n", bounds.l, bounds.b, bounds.r, bounds.t);
if (svgDims.x != 0 && svgDims.y != 0)
fprintf(out, "dimensions = %.12g, %.12g\n", svgDims.x, svgDims.y);
if (glyphAdvance != 0)
fprintf(out, "advance = %.12g\n", glyphAdvance);
if (autoFrame) {
if (!scaleSpecified)
fprintf(out, "scale = %.12g\n", avgScale);
fprintf(out, "translate = %.12g, %.12g\n", translate.x, translate.y);
}
if (rangeMode == RANGE_PX)
fprintf(out, "range = %.12g\n", range);
if (mode == METRICS && outputSpecified)
fclose(out);
}
// Compute output
Bitmap<float, 1> sdf;
Bitmap<float, 3> msdf;
switch (mode) {
case SINGLE: {
sdf = Bitmap<float, 1>(width, height);
if (legacyMode)
generateSDF_legacy(sdf, shape, range, scale, translate);
else
generateSDF(sdf, shape, range, scale, translate, overlapSupport);
break;
}
case PSEUDO: {
sdf = Bitmap<float, 1>(width, height);
if (legacyMode)
generatePseudoSDF_legacy(sdf, shape, range, scale, translate);
else
generatePseudoSDF(sdf, shape, range, scale, translate, overlapSupport);
break;
}
case MULTI: {
if (!skipColoring)
edgeColoringSimple(shape, angleThreshold, coloringSeed);
if (edgeAssignment)
parseColoring(shape, edgeAssignment);
msdf = Bitmap<float, 3>(width, height);
if (legacyMode)
generateMSDF_legacy(msdf, shape, range, scale, translate, scanlinePass ? 0 : edgeThreshold);
else
generateMSDF(msdf, shape, range, scale, translate, scanlinePass ? 0 : edgeThreshold, overlapSupport);
break;
}
default:;
}
if (orientation == GUESS) {
// Get sign of signed distance outside bounds
Point2 p(bounds.l-(bounds.r-bounds.l)-1, bounds.b-(bounds.t-bounds.b)-1);
double dummy;
SignedDistance minDistance;
for (std::vector<Contour>::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour)
for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) {
SignedDistance distance = (*edge)->signedDistance(p, dummy);
if (distance < minDistance)
minDistance = distance;
}
orientation = minDistance.distance <= 0 ? KEEP : REVERSE;
}
if (orientation == REVERSE) {
switch (mode) {
case SINGLE:
case PSEUDO:
invertColor<1>(sdf);
break;
case MULTI:
invertColor<3>(msdf);
break;
default:;
}
}
if (scanlinePass) {
switch (mode) {
case SINGLE:
case PSEUDO:
distanceSignCorrection(sdf, shape, scale, translate, fillRule);
break;
case MULTI:
distanceSignCorrection(msdf, shape, scale, translate, fillRule);
if (edgeThreshold > 0)
msdfErrorCorrection(msdf, edgeThreshold/(scale*range));
break;
default:;
}
}
// Save output
if (shapeExport) {
FILE *file = fopen(shapeExport, "w");
if (file) {
writeShapeDescription(file, shape);
fclose(file);
} else
puts("Failed to write shape export file.");
}
const char *error = NULL;
switch (mode) {
case SINGLE:
case PSEUDO:
error = writeOutput<1>(sdf, output, format);
if (error)
ABORT(error);
if (testRenderMulti || testRender)
simulate8bit(sdf);
if (testRenderMulti) {
Bitmap<float, 3> render(testWidthM, testHeightM);
renderSDF(render, sdf, avgScale*range);
if (!savePng(render, testRenderMulti))
puts("Failed to write test render file.");
}
if (testRender) {
Bitmap<float, 1> render(testWidth, testHeight);
renderSDF(render, sdf, avgScale*range);
if (!savePng(render, testRender))
puts("Failed to write test render file.");
}
break;
case MULTI:
error = writeOutput<3>(msdf, output, format);
if (error)
ABORT(error);
if (testRenderMulti || testRender)
simulate8bit(msdf);
if (testRenderMulti) {
Bitmap<float, 3> render(testWidthM, testHeightM);
renderSDF(render, msdf, avgScale*range);
if (!savePng(render, testRenderMulti))
puts("Failed to write test render file.");
}
if (testRender) {
Bitmap<float, 1> render(testWidth, testHeight);
renderSDF(render, msdf, avgScale*range);
if (!savePng(render, testRender))
ABORT("Failed to write test render file.");
}
break;
default:;
}
return 0;
}
#endif