msdfgen/core/bezier-solver.hpp

96 lines
3.1 KiB
C++

#pragma once
#include <cmath>
#include "types.h"
#include "Vector2.hpp"
// Parameters for iterative search of closest point on a cubic Bezier curve. Increase for higher precision.
#define MSDFGEN_CUBIC_SEARCH_STARTS 4
#define MSDFGEN_CUBIC_SEARCH_STEPS 4
#define MSDFGEN_QUADRATIC_RATIO_LIMIT ::msdfgen::real(1e8)
#ifndef MSDFGEN_CUBE_ROOT
#define MSDFGEN_CUBE_ROOT(x) pow((x), ::msdfgen::real(1)/::msdfgen::real(3))
#endif
namespace msdfgen {
/**
* Returns the parameter for the quadratic Bezier curve (P0, P1, P2) for the point closest to point P. May be outside the (0, 1) range.
* p = P-P0
* q = 2*P1-2*P0
* r = P2-2*P1+P0
*/
inline real quadraticNearPoint(const Vector2 p, const Vector2 q, const Vector2 r) {
real qq = q.squaredLength();
real rr = r.squaredLength();
if (qq >= MSDFGEN_QUADRATIC_RATIO_LIMIT*rr)
return dotProduct(p, q)/qq;
real norm = real(.5)/rr;
real a = real(3)*norm*dotProduct(q, r);
real b = norm*(qq-real(2)*dotProduct(p, r));
real c = norm*dotProduct(p, q);
real aa = a*a;
real g = real(1)/real(9)*(aa-real(3)*b);
real h = real(1)/real(54)*(a*(aa+aa-real(9)*b)-real(27)*c);
real hh = h*h;
real ggg = g*g*g;
a *= real(1)/real(3);
if (hh < ggg) {
real u = real(1)/real(3)*acos(h/sqrt(ggg));
g = real(-2)*sqrt(g);
if (h >= real(0)) {
real t = g*cos(u)-a;
if (t >= real(0))
return t;
return g*cos(u+real(2.0943951023931954923))-a; // 2.094 = PI*2/3
} else {
real t = g*cos(u+real(2.0943951023931954923))-a;
if (t <= real(1))
return t;
return g*cos(u)-a;
}
}
real s = (h < real(0) ? real(1) : real(-1))*MSDFGEN_CUBE_ROOT(fabs(h)+sqrt(hh-ggg));
return s+g/s-a;
}
/**
* Returns the parameter for the cubic Bezier curve (P0, P1, P2, P3) for the point closest to point P. Squared distance is provided as optional output parameter.
* p = P-P0
* q = 3*P1-3*P0
* r = 3*P2-6*P1+3*P0
* s = P3-3*P2+3*P1-P0
*/
inline real cubicNearPoint(const Vector2 p, const Vector2 q, const Vector2 r, const Vector2 s, real &squaredDistance) {
squaredDistance = p.squaredLength();
real bestT = 0;
for (int i = 0; i <= MSDFGEN_CUBIC_SEARCH_STARTS; ++i) {
real t = real(1)/real(MSDFGEN_CUBIC_SEARCH_STARTS)*real(i);
Vector2 curP = p-(q+(r+s*t)*t)*t;
for (int step = 0; step < MSDFGEN_CUBIC_SEARCH_STEPS; ++step) {
Vector2 d0 = q+(r+r+real(3)*s*t)*t;
Vector2 d1 = r+r+real(6)*s*t;
t += dotProduct(curP, d0)/(d0.squaredLength()-dotProduct(curP, d1));
if (t <= real(0) || t >= real(1))
break;
curP = p-(q+(r+s*t)*t)*t;
real curSquaredDistance = curP.squaredLength();
if (curSquaredDistance < squaredDistance) {
squaredDistance = curSquaredDistance;
bestT = t;
}
}
}
return bestT;
}
inline real cubicNearPoint(const Vector2 p, const Vector2 q, const Vector2 r, const Vector2 s) {
real squaredDistance;
return cubicNearPoint(p, q, r, s, squaredDistance);
}
}