msdfgen/ext/import-svg.cpp

1066 lines
42 KiB
C++

#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#ifndef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#endif
#include "import-svg.h"
#ifndef MSDFGEN_DISABLE_SVG
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <stack>
#ifdef MSDFGEN_USE_TINYXML2
#include <tinyxml2.h>
#endif
#ifdef MSDFGEN_USE_DROPXML
#include <dropXML.hpp>
#endif
#ifdef MSDFGEN_USE_SKIA
#include <skia/core/SkPath.h>
#include <skia/utils/SkParsePath.h>
#include <skia/pathops/SkPathOps.h>
#endif
#include "../core/arithmetics.hpp"
#define ARC_SEGMENTS_PER_PI 2
#define ENDPOINT_SNAP_RANGE_PROPORTION (1/16384.)
namespace msdfgen {
#if defined(_DEBUG) || !NDEBUG
#define REQUIRE(cond) { if (!(cond)) { fprintf(stderr, "SVG Parse Error (%s:%d): " #cond "\n", __FILE__, __LINE__); return false; } }
#else
#define REQUIRE(cond) { if (!(cond)) return false; }
#endif
MSDFGEN_EXT_PUBLIC const int SVG_IMPORT_FAILURE = 0x00;
MSDFGEN_EXT_PUBLIC const int SVG_IMPORT_SUCCESS_FLAG = 0x01;
MSDFGEN_EXT_PUBLIC const int SVG_IMPORT_PARTIAL_FAILURE_FLAG = 0x02;
MSDFGEN_EXT_PUBLIC const int SVG_IMPORT_INCOMPLETE_FLAG = 0x04;
MSDFGEN_EXT_PUBLIC const int SVG_IMPORT_UNSUPPORTED_FEATURE_FLAG = 0x08;
MSDFGEN_EXT_PUBLIC const int SVG_IMPORT_TRANSFORMATION_IGNORED_FLAG = 0x10;
#define FLAGS_FINAL(flags) (((flags)&(SVG_IMPORT_SUCCESS_FLAG|SVG_IMPORT_INCOMPLETE_FLAG|SVG_IMPORT_UNSUPPORTED_FEATURE_FLAG)) == (SVG_IMPORT_SUCCESS_FLAG|SVG_IMPORT_INCOMPLETE_FLAG|SVG_IMPORT_UNSUPPORTED_FEATURE_FLAG))
static void skipExtraChars(const char *&pathDef) {
while (*pathDef == ',' || *pathDef == ' ' || *pathDef == '\t' || *pathDef == '\r' || *pathDef == '\n')
++pathDef;
}
static bool readNodeType(char &output, const char *&pathDef) {
skipExtraChars(pathDef);
char nodeType = *pathDef;
if (nodeType && nodeType != '+' && nodeType != '-' && nodeType != '.' && nodeType != ',' && (nodeType < '0' || nodeType > '9')) {
++pathDef;
output = nodeType;
return true;
}
return false;
}
static bool readDouble(double &output, const char *&pathDef) {
skipExtraChars(pathDef);
char *end = NULL;
output = strtod(pathDef, &end);
if (end > pathDef) {
pathDef = end;
return true;
}
return false;
}
static bool readCoord(Point2 &output, const char *&pathDef) {
return readDouble(output.x, pathDef) && readDouble(output.y, pathDef);
}
static bool readBool(bool &output, const char *&pathDef) {
skipExtraChars(pathDef);
char *end = NULL;
long v = strtol(pathDef, &end, 10);
if (end > pathDef) {
pathDef = end;
output = v != 0;
return true;
}
return false;
}
static double arcAngle(Vector2 u, Vector2 v) {
return nonZeroSign(crossProduct(u, v))*acos(clamp(dotProduct(u, v)/(u.length()*v.length()), -1., +1.));
}
static Vector2 rotateVector(Vector2 v, Vector2 direction) {
return Vector2(direction.x*v.x-direction.y*v.y, direction.y*v.x+direction.x*v.y);
}
static void addArcApproximate(Contour &contour, Point2 startPoint, Point2 endPoint, Vector2 radius, double rotation, bool largeArc, bool sweep) {
if (endPoint == startPoint)
return;
if (radius.x == 0 || radius.y == 0)
return contour.addEdge(EdgeHolder(startPoint, endPoint));
radius.x = fabs(radius.x);
radius.y = fabs(radius.y);
Vector2 axis(cos(rotation), sin(rotation));
Vector2 rm = rotateVector(.5*(startPoint-endPoint), Vector2(axis.x, -axis.y));
Vector2 rm2 = rm*rm;
Vector2 radius2 = radius*radius;
double radiusGap = rm2.x/radius2.x+rm2.y/radius2.y;
if (radiusGap > 1) {
radius *= sqrt(radiusGap);
radius2 = radius*radius;
}
double dq = (radius2.x*rm2.y+radius2.y*rm2.x);
double pq = radius2.x*radius2.y/dq-1;
double q = (largeArc == sweep ? -1 : +1)*sqrt(max(pq, 0.));
Vector2 rc(q*radius.x*rm.y/radius.y, -q*radius.y*rm.x/radius.x);
Point2 center = .5*(startPoint+endPoint)+rotateVector(rc, axis);
double angleStart = arcAngle(Vector2(1, 0), (rm-rc)/radius);
double angleExtent = arcAngle((rm-rc)/radius, (-rm-rc)/radius);
if (!sweep && angleExtent > 0)
angleExtent -= 2*M_PI;
else if (sweep && angleExtent < 0)
angleExtent += 2*M_PI;
int segments = (int) ceil(ARC_SEGMENTS_PER_PI/M_PI*fabs(angleExtent));
double angleIncrement = angleExtent/segments;
double cl = 4/3.*sin(.5*angleIncrement)/(1+cos(.5*angleIncrement));
Point2 prevNode = startPoint;
double angle = angleStart;
for (int i = 0; i < segments; ++i) {
Point2 controlPoint[2];
Vector2 d(cos(angle), sin(angle));
controlPoint[0] = center+rotateVector(Vector2(d.x-cl*d.y, d.y+cl*d.x)*radius, axis);
angle += angleIncrement;
d.set(cos(angle), sin(angle));
controlPoint[1] = center+rotateVector(Vector2(d.x+cl*d.y, d.y-cl*d.x)*radius, axis);
Point2 node = i == segments-1 ? endPoint : center+rotateVector(d*radius, axis);
contour.addEdge(EdgeHolder(prevNode, controlPoint[0], controlPoint[1], node));
prevNode = node;
}
}
bool buildShapeFromSvgPath(Shape &shape, const char *pathDef, double endpointSnapRange) {
char nodeType = '\0';
char prevNodeType = '\0';
Point2 prevNode(0, 0);
bool nodeTypePreread = false;
while (nodeTypePreread || readNodeType(nodeType, pathDef)) {
nodeTypePreread = false;
Contour &contour = shape.addContour();
bool contourStart = true;
Point2 startPoint;
Point2 controlPoint[2];
Point2 node;
while (*pathDef) {
switch (nodeType) {
case 'M': case 'm':
if (!contourStart) {
nodeTypePreread = true;
goto NEXT_CONTOUR;
}
REQUIRE(readCoord(node, pathDef));
if (nodeType == 'm')
node += prevNode;
startPoint = node;
--nodeType; // to 'L' or 'l'
break;
case 'Z': case 'z':
REQUIRE(!contourStart);
goto NEXT_CONTOUR;
case 'L': case 'l':
REQUIRE(readCoord(node, pathDef));
if (nodeType == 'l')
node += prevNode;
contour.addEdge(EdgeHolder(prevNode, node));
break;
case 'H': case 'h':
REQUIRE(readDouble(node.x, pathDef));
if (nodeType == 'h')
node.x += prevNode.x;
contour.addEdge(EdgeHolder(prevNode, node));
break;
case 'V': case 'v':
REQUIRE(readDouble(node.y, pathDef));
if (nodeType == 'v')
node.y += prevNode.y;
contour.addEdge(EdgeHolder(prevNode, node));
break;
case 'Q': case 'q':
REQUIRE(readCoord(controlPoint[0], pathDef));
REQUIRE(readCoord(node, pathDef));
if (nodeType == 'q') {
controlPoint[0] += prevNode;
node += prevNode;
}
contour.addEdge(EdgeHolder(prevNode, controlPoint[0], node));
break;
case 'T': case 't':
if (prevNodeType == 'Q' || prevNodeType == 'q' || prevNodeType == 'T' || prevNodeType == 't')
controlPoint[0] = node+node-controlPoint[0];
else
controlPoint[0] = node;
REQUIRE(readCoord(node, pathDef));
if (nodeType == 't')
node += prevNode;
contour.addEdge(EdgeHolder(prevNode, controlPoint[0], node));
break;
case 'C': case 'c':
REQUIRE(readCoord(controlPoint[0], pathDef));
REQUIRE(readCoord(controlPoint[1], pathDef));
REQUIRE(readCoord(node, pathDef));
if (nodeType == 'c') {
controlPoint[0] += prevNode;
controlPoint[1] += prevNode;
node += prevNode;
}
contour.addEdge(EdgeHolder(prevNode, controlPoint[0], controlPoint[1], node));
break;
case 'S': case 's':
if (prevNodeType == 'C' || prevNodeType == 'c' || prevNodeType == 'S' || prevNodeType == 's')
controlPoint[0] = node+node-controlPoint[1];
else
controlPoint[0] = node;
REQUIRE(readCoord(controlPoint[1], pathDef));
REQUIRE(readCoord(node, pathDef));
if (nodeType == 's') {
controlPoint[1] += prevNode;
node += prevNode;
}
contour.addEdge(EdgeHolder(prevNode, controlPoint[0], controlPoint[1], node));
break;
case 'A': case 'a':
{
Vector2 radius;
double angle;
bool largeArg;
bool sweep;
REQUIRE(readCoord(radius, pathDef));
REQUIRE(readDouble(angle, pathDef));
REQUIRE(readBool(largeArg, pathDef));
REQUIRE(readBool(sweep, pathDef));
REQUIRE(readCoord(node, pathDef));
if (nodeType == 'a')
node += prevNode;
angle *= M_PI/180.0;
addArcApproximate(contour, prevNode, node, radius, angle, largeArg, sweep);
}
break;
default:
REQUIRE(!"Unknown node type");
}
contourStart &= nodeType == 'M' || nodeType == 'm';
prevNode = node;
prevNodeType = nodeType;
readNodeType(nodeType, pathDef);
}
NEXT_CONTOUR:
// Fix contour if it isn't properly closed
if (!contour.edges.empty() && prevNode != startPoint) {
if ((contour.edges.back()->point(1)-contour.edges[0]->point(0)).length() < endpointSnapRange)
contour.edges.back()->moveEndPoint(contour.edges[0]->point(0));
else
contour.addEdge(EdgeHolder(prevNode, startPoint));
}
prevNode = startPoint;
prevNodeType = '\0';
}
return true;
}
#ifdef MSDFGEN_USE_TINYXML2
static void findPathByForwardIndex(tinyxml2::XMLElement *&path, int &flags, int &skips, tinyxml2::XMLElement *parent, bool hasTransformation) {
for (tinyxml2::XMLElement *cur = parent->FirstChildElement(); cur && !FLAGS_FINAL(flags); cur = cur->NextSiblingElement()) {
if (!strcmp(cur->Name(), "path")) {
if (!skips--) {
path = cur;
flags |= SVG_IMPORT_SUCCESS_FLAG;
if (hasTransformation || cur->Attribute("transform"))
flags |= SVG_IMPORT_TRANSFORMATION_IGNORED_FLAG;
} else if (flags&SVG_IMPORT_SUCCESS_FLAG)
flags |= SVG_IMPORT_INCOMPLETE_FLAG;
} else if (!strcmp(cur->Name(), "g"))
findPathByForwardIndex(path, flags, skips, cur, hasTransformation || cur->Attribute("transform"));
else if (!strcmp(cur->Name(), "rect") || !strcmp(cur->Name(), "circle") || !strcmp(cur->Name(), "ellipse") || !strcmp(cur->Name(), "polygon"))
flags |= SVG_IMPORT_INCOMPLETE_FLAG;
else if (!strcmp(cur->Name(), "mask") || !strcmp(cur->Name(), "use"))
flags |= SVG_IMPORT_UNSUPPORTED_FEATURE_FLAG;
}
}
static void findPathByBackwardIndex(tinyxml2::XMLElement *&path, int &flags, int &skips, tinyxml2::XMLElement *parent, bool hasTransformation) {
for (tinyxml2::XMLElement *cur = parent->LastChildElement(); cur && !FLAGS_FINAL(flags); cur = cur->PreviousSiblingElement()) {
if (!strcmp(cur->Name(), "path")) {
if (!skips--) {
path = cur;
flags |= SVG_IMPORT_SUCCESS_FLAG;
if (hasTransformation || cur->Attribute("transform"))
flags |= SVG_IMPORT_TRANSFORMATION_IGNORED_FLAG;
} else if (flags&SVG_IMPORT_SUCCESS_FLAG)
flags |= SVG_IMPORT_INCOMPLETE_FLAG;
} else if (!strcmp(cur->Name(), "g"))
findPathByBackwardIndex(path, flags, skips, cur, hasTransformation || cur->Attribute("transform"));
else if (!strcmp(cur->Name(), "rect") || !strcmp(cur->Name(), "circle") || !strcmp(cur->Name(), "ellipse") || !strcmp(cur->Name(), "polygon"))
flags |= SVG_IMPORT_INCOMPLETE_FLAG;
else if (!strcmp(cur->Name(), "mask") || !strcmp(cur->Name(), "use"))
flags |= SVG_IMPORT_UNSUPPORTED_FEATURE_FLAG;
}
}
bool loadSvgShape(Shape &output, const char *filename, int pathIndex, Vector2 *dimensions) {
tinyxml2::XMLDocument doc;
if (doc.LoadFile(filename))
return false;
tinyxml2::XMLElement *root = doc.FirstChildElement("svg");
if (!root)
return false;
tinyxml2::XMLElement *path = NULL;
int flags = 0;
int skippedPaths = abs(pathIndex)-(pathIndex != 0);
if (pathIndex > 0)
findPathByForwardIndex(path, flags, skippedPaths, root, false);
else
findPathByBackwardIndex(path, flags, skippedPaths, root, false);
if (!path)
return false;
const char *pd = path->Attribute("d");
if (!pd)
return false;
Vector2 dims(root->DoubleAttribute("width"), root->DoubleAttribute("height"));
if (const char *viewBox = root->Attribute("viewBox")) {
double left = 0, top = 0;
readDouble(left, viewBox) && readDouble(top, viewBox) && readDouble(dims.x, viewBox) && readDouble(dims.y, viewBox);
}
if (dimensions)
*dimensions = dims;
output.contours.clear();
output.inverseYAxis = true;
return buildShapeFromSvgPath(output, pd, ENDPOINT_SNAP_RANGE_PROPORTION*dims.length());
}
#endif
#ifdef MSDFGEN_USE_DROPXML
struct StrRange {
const char *start, *end;
inline StrRange() : start(), end() { }
inline StrRange(const char *start, const char *end) : start(start), end(end) { }
inline std::string str() const { return std::string(start, end); }
};
static bool matchName(const char *start, const char *end, const char *value) {
for (const char *c = start; c < end; ++c, ++value) {
if (*c != *value)
return false;
}
return !*value;
}
static std::string xmlDecode(const char *start, const char *end) {
if (!dropXML::decode(start, end, nullptr, nullptr)) {
std::string buffer(end-start+1, '\0');
if (!dropXML::decode(start, end, &buffer[0], &buffer[buffer.size()-1]))
return std::string();
if (start == buffer.data()) {
buffer.resize(end-start, '\0');
return (std::string &&) buffer;
}
}
return std::string(start, end);
}
static double xmlGetDouble(const char *start, const char *end) {
double x = 0;
std::string decodedStr(xmlDecode(start, end));
const char *strPtr = decodedStr.c_str();
readDouble(x, strPtr);
return x;
}
#define SVG_NAME_IS(x) matchName(nameStart, nameEnd, x)
#define SVG_DEC_VAL() xmlDecode(valueStart, valueEnd)
#define SVG_DOUBLEVAL() xmlGetDouble(valueStart, valueEnd)
static bool readFile(std::vector<char> &output, const char *filename) {
if (FILE *f = fopen(filename, "rb")) {
struct FileGuard {
FILE *f;
~FileGuard() {
fclose(f);
}
} fileGuard = { f };
if (fseek(f, 0, SEEK_END))
return false;
long size = ftell(f);
if (size < 0)
return false;
output.resize(size);
if (!size)
return true;
if (fseek(f, 0, SEEK_SET))
return false;
return fread(&output[0], 1, size, f) == (size_t) size;
}
return false;
}
class BaseSvgConsumer {
public:
inline bool processingInstruction(const char *, const char *) { return true; }
inline bool doctype(const char *, const char *) { return true; }
inline bool text(const char *, const char *) { return true; }
inline bool cdata(const char *, const char *) { return true; }
};
class SvgPathAggregator : public BaseSvgConsumer {
enum {
IGNORED,
SVG,
G,
PATH
} curElement;
int ignoredDepth;
public:
int flags;
Vector2 dimensions;
StrRange viewBox;
std::vector<StrRange> pathDefs;
inline SvgPathAggregator() : curElement(IGNORED), ignoredDepth(0), flags(0) { }
inline bool enterElement(const char *nameStart, const char *nameEnd) {
curElement = IGNORED;
if (ignoredDepth)
++ignoredDepth;
else if (SVG_NAME_IS("svg"))
curElement = SVG;
else if (SVG_NAME_IS("g"))
curElement = G;
else if (SVG_NAME_IS("path"))
curElement = PATH;
else {
if (SVG_NAME_IS("rect") || SVG_NAME_IS("circle") || SVG_NAME_IS("ellipse") || SVG_NAME_IS("polygon"))
flags |= SVG_IMPORT_INCOMPLETE_FLAG;
else if (SVG_NAME_IS("mask") || SVG_NAME_IS("use"))
flags |= SVG_IMPORT_UNSUPPORTED_FEATURE_FLAG;
++ignoredDepth;
}
return true;
}
inline bool leaveElement(const char *, const char *) {
if (ignoredDepth)
--ignoredDepth;
return true;
}
inline bool elementAttribute(const char *nameStart, const char *nameEnd, const char *valueStart, const char *valueEnd) {
switch (curElement) {
case IGNORED:
break;
case SVG:
if (SVG_NAME_IS("width"))
dimensions.x = xmlGetDouble(valueStart, valueEnd);
else if (SVG_NAME_IS("height"))
dimensions.y = xmlGetDouble(valueStart, valueEnd);
else if (SVG_NAME_IS("viewBox"))
viewBox = StrRange(valueStart, valueEnd);
break;
case PATH:
if (SVG_NAME_IS("d"))
pathDefs.push_back(StrRange(valueStart, valueEnd));
// fallthrough
case G:
if (SVG_NAME_IS("transform"))
flags |= SVG_IMPORT_TRANSFORMATION_IGNORED_FLAG;
break;
}
return true;
}
inline bool finishAttributes() { return true; }
inline bool finish() { return !ignoredDepth; }
};
bool loadSvgShape(Shape &output, const char *filename, int pathIndex, Vector2 *dimensions) {
std::vector<char> svgData;
if (!(readFile(svgData, filename) && !svgData.empty()))
return false;
SvgPathAggregator pathAggregator;
if (!dropXML::parse(pathAggregator, &svgData[0], &svgData[0]+svgData.size()))
return false;
if (pathIndex <= 0) {
if (pathIndex == 0)
pathIndex = -1;
pathIndex = pathAggregator.pathDefs.size()+pathIndex;
} else
--pathIndex;
if (!(pathIndex > 0 && pathIndex < (int) pathAggregator.pathDefs.size()))
return false;
Vector2 dims(pathAggregator.dimensions);
if (pathAggregator.viewBox.start < pathAggregator.viewBox.end) {
std::string viewBoxStr = xmlDecode(pathAggregator.viewBox.start, pathAggregator.viewBox.end);
const char *viewBoxPtr = viewBoxStr.c_str();
double left = 0, top = 0;
readDouble(left, viewBoxPtr) && readDouble(top, viewBoxPtr) && readDouble(dims.x, viewBoxPtr) && readDouble(dims.y, viewBoxPtr);
}
if (dimensions)
*dimensions = dims;
output.contours.clear();
output.inverseYAxis = true;
return buildShapeFromSvgPath(output, xmlDecode(pathAggregator.pathDefs[pathIndex].start, pathAggregator.pathDefs[pathIndex].end).c_str(), ENDPOINT_SNAP_RANGE_PROPORTION*dims.length());
}
#endif
#ifndef MSDFGEN_USE_SKIA
#ifdef MSDFGEN_USE_TINYXML2
int loadSvgShape(Shape &output, Shape::Bounds &viewBox, const char *filename) {
tinyxml2::XMLDocument doc;
if (doc.LoadFile(filename))
return SVG_IMPORT_FAILURE;
tinyxml2::XMLElement *root = doc.FirstChildElement("svg");
if (!root)
return SVG_IMPORT_FAILURE;
tinyxml2::XMLElement *path = NULL;
int flags = 0;
int skippedPaths = 0;
findPathByBackwardIndex(path, flags, skippedPaths, root, false);
if (!(path && (flags&SVG_IMPORT_SUCCESS_FLAG)))
return SVG_IMPORT_FAILURE;
const char *pd = path->Attribute("d");
if (!pd)
return SVG_IMPORT_FAILURE;
viewBox.l = 0, viewBox.b = 0;
Vector2 dims(root->DoubleAttribute("width"), root->DoubleAttribute("height"));
if (const char *viewBoxStr = root->Attribute("viewBox"))
readDouble(viewBox.l, viewBoxStr) && readDouble(viewBox.b, viewBoxStr) && readDouble(dims.x, viewBoxStr) && readDouble(dims.y, viewBoxStr);
viewBox.r = viewBox.l+dims.x;
viewBox.t = viewBox.b+dims.y;
output.contours.clear();
output.inverseYAxis = true;
if (!buildShapeFromSvgPath(output, pd, ENDPOINT_SNAP_RANGE_PROPORTION*dims.length()))
return SVG_IMPORT_FAILURE;
return flags;
}
#endif
#ifdef MSDFGEN_USE_DROPXML
int loadSvgShape(Shape &output, Shape::Bounds &viewBox, const char *filename) {
std::vector<char> svgData;
if (!(readFile(svgData, filename) && !svgData.empty()))
return SVG_IMPORT_FAILURE;
SvgPathAggregator pathAggregator;
if (!dropXML::parse(pathAggregator, &svgData[0], &svgData[0]+svgData.size()) || pathAggregator.pathDefs.empty())
return SVG_IMPORT_FAILURE;
viewBox.l = 0, viewBox.b = 0;
Vector2 dims(pathAggregator.dimensions);
if (pathAggregator.viewBox.start < pathAggregator.viewBox.end) {
std::string viewBoxStr = xmlDecode(pathAggregator.viewBox.start, pathAggregator.viewBox.end);
const char *viewBoxPtr = viewBoxStr.c_str();
readDouble(viewBox.l, viewBoxPtr) && readDouble(viewBox.b, viewBoxPtr) && readDouble(dims.x, viewBoxPtr) && readDouble(dims.y, viewBoxPtr);
}
viewBox.r = viewBox.l+dims.x;
viewBox.t = viewBox.b+dims.y;
output.contours.clear();
output.inverseYAxis = true;
if (!buildShapeFromSvgPath(output, xmlDecode(pathAggregator.pathDefs.back().start, pathAggregator.pathDefs.back().end).c_str(), ENDPOINT_SNAP_RANGE_PROPORTION*dims.length()))
return SVG_IMPORT_FAILURE;
return SVG_IMPORT_SUCCESS_FLAG|pathAggregator.flags;
}
#endif
#else
void shapeFromSkiaPath(Shape &shape, const SkPath &skPath); // defined in resolve-shape-geometry.cpp
static bool readTransformationOp(SkScalar dst[6], int &count, const char *&str, const char *name) {
int nameLen = int(strlen(name));
if (!memcmp(str, name, nameLen)) {
const char *curStr = str+nameLen;
skipExtraChars(curStr);
if (*curStr == '(') {
skipExtraChars(++curStr);
count = 0;
while (*curStr && *curStr != ')') {
double x;
if (!(count < 6 && readDouble(x, curStr)))
return false;
dst[count++] = SkScalar(x);
skipExtraChars(curStr);
}
if (*curStr == ')') {
str = curStr+1;
return true;
}
}
}
return false;
}
static SkMatrix parseTransformation(int &flags, const char *str) {
SkMatrix transformation;
skipExtraChars(str);
while (*str) {
SkScalar values[6];
int count;
SkMatrix partial;
if (readTransformationOp(values, count, str, "matrix") && count == 6) {
partial.setAll(values[0], values[2], values[4], values[1], values[3], values[5], SkScalar(0), SkScalar(0), SkScalar(1));
} else if (readTransformationOp(values, count, str, "translate") && (count == 1 || count == 2)) {
if (count == 1)
values[1] = SkScalar(0);
partial.setTranslate(values[0], values[1]);
} else if (readTransformationOp(values, count, str, "scale") && (count == 1 || count == 2)) {
if (count == 1)
values[1] = values[0];
partial.setScale(values[0], values[1]);
} else if (readTransformationOp(values, count, str, "rotate") && (count == 1 || count == 3)) {
if (count == 3)
partial.setRotate(values[0], values[1], values[2]);
else
partial.setRotate(values[0]);
} else if (readTransformationOp(values, count, str, "skewX") && count == 1) {
partial.setSkewX(SkScalar(tan(M_PI/180*values[0])));
} else if (readTransformationOp(values, count, str, "skewY") && count == 1) {
partial.setSkewY(SkScalar(tan(M_PI/180*values[0])));
} else {
flags |= SVG_IMPORT_PARTIAL_FAILURE_FLAG;
break;
}
transformation = transformation*partial;
skipExtraChars(str);
}
return transformation;
}
static SkMatrix combineTransformation(int &flags, const SkMatrix &parentTransformation, const char *transformationString, const char *transformationOriginString) {
if (transformationString && *transformationString) {
SkMatrix transformation = parseTransformation(flags, transformationString);
if (transformationOriginString && *transformationOriginString) {
Point2 origin;
if (readCoord(origin, transformationOriginString))
transformation = SkMatrix::Translate(SkScalar(origin.x), SkScalar(origin.y))*transformation*SkMatrix::Translate(SkScalar(-origin.x), SkScalar(-origin.y));
else
flags |= SVG_IMPORT_PARTIAL_FAILURE_FLAG;
}
return parentTransformation*transformation;
}
return parentTransformation;
}
#ifdef MSDFGEN_USE_TINYXML2
static void gatherPaths(SkPath &fullPath, int &flags, tinyxml2::XMLElement *parent, const SkMatrix &transformation) {
for (tinyxml2::XMLElement *cur = parent->FirstChildElement(); cur && !FLAGS_FINAL(flags); cur = cur->NextSiblingElement()) {
if (!strcmp(cur->Name(), "g"))
gatherPaths(fullPath, flags, cur, combineTransformation(flags, transformation, cur->Attribute("transform"), cur->Attribute("transform-origin")));
else if (!strcmp(cur->Name(), "mask") || !strcmp(cur->Name(), "use"))
flags |= SVG_IMPORT_UNSUPPORTED_FEATURE_FLAG;
else {
SkPath curPath;
if (!strcmp(cur->Name(), "path")) {
const char *pd = cur->Attribute("d");
if (!(pd && SkParsePath::FromSVGString(pd, &curPath))) {
flags |= SVG_IMPORT_PARTIAL_FAILURE_FLAG;
continue;
}
} else if (!strcmp(cur->Name(), "rect")) {
SkScalar x = SkScalar(cur->DoubleAttribute("x")), y = SkScalar(cur->DoubleAttribute("y"));
SkScalar width = SkScalar(cur->DoubleAttribute("width")), height = SkScalar(cur->DoubleAttribute("height"));
SkScalar rx = SkScalar(cur->DoubleAttribute("rx")), ry = SkScalar(cur->DoubleAttribute("ry"));
if (!(width && height))
continue;
SkRect rect = SkRect::MakeLTRB(x, y, x+width, y+height);
if (rx || ry) {
SkScalar radii[] = { rx, ry, rx, ry, rx, ry, rx, ry };
curPath.addRoundRect(rect, radii);
} else
curPath.addRect(rect);
} else if (!strcmp(cur->Name(), "circle")) {
SkScalar cx = SkScalar(cur->DoubleAttribute("cx")), cy = SkScalar(cur->DoubleAttribute("cy"));
SkScalar r = SkScalar(cur->DoubleAttribute("r"));
if (!r)
continue;
curPath.addCircle(cx, cy, r);
} else if (!strcmp(cur->Name(), "ellipse")) {
SkScalar cx = SkScalar(cur->DoubleAttribute("cx")), cy = SkScalar(cur->DoubleAttribute("cy"));
SkScalar rx = SkScalar(cur->DoubleAttribute("rx")), ry = SkScalar(cur->DoubleAttribute("ry"));
if (!(rx && ry))
continue;
curPath.addOval(SkRect::MakeLTRB(cx-rx, cy-ry, cx+rx, cy+ry));
} else if (!strcmp(cur->Name(), "polygon")) {
const char *pd = cur->Attribute("points");
if (!pd) {
flags |= SVG_IMPORT_PARTIAL_FAILURE_FLAG;
continue;
}
Point2 point;
if (!readCoord(point, pd))
continue;
curPath.moveTo(SkScalar(point.x), SkScalar(point.y));
if (!readCoord(point, pd))
continue;
do {
curPath.lineTo(SkScalar(point.x), SkScalar(point.y));
} while (readCoord(point, pd));
curPath.close();
} else
continue;
const char *fillRule = cur->Attribute("fill-rule");
if (fillRule && !strcmp(fillRule, "evenodd"))
curPath.setFillType(SkPathFillType::kEvenOdd);
curPath.transform(combineTransformation(flags, transformation, cur->Attribute("transform"), cur->Attribute("transform-origin")));
if (Op(fullPath, curPath, kUnion_SkPathOp, &fullPath))
flags |= SVG_IMPORT_SUCCESS_FLAG;
else
flags |= SVG_IMPORT_PARTIAL_FAILURE_FLAG;
}
}
}
int loadSvgShape(Shape &output, Shape::Bounds &viewBox, const char *filename) {
tinyxml2::XMLDocument doc;
if (doc.LoadFile(filename))
return SVG_IMPORT_FAILURE;
tinyxml2::XMLElement *root = doc.FirstChildElement("svg");
if (!root)
return SVG_IMPORT_FAILURE;
SkPath fullPath;
int flags = 0;
gatherPaths(fullPath, flags, root, SkMatrix());
if (!((flags&SVG_IMPORT_SUCCESS_FLAG) && Simplify(fullPath, &fullPath)))
return SVG_IMPORT_FAILURE;
shapeFromSkiaPath(output, fullPath);
output.inverseYAxis = true;
output.orientContours();
viewBox.l = 0, viewBox.b = 0;
Vector2 dims(root->DoubleAttribute("width"), root->DoubleAttribute("height"));
if (const char *viewBoxStr = root->Attribute("viewBox"))
readDouble(viewBox.l, viewBoxStr) && readDouble(viewBox.b, viewBoxStr) && readDouble(dims.x, viewBoxStr) && readDouble(dims.y, viewBoxStr);
viewBox.r = viewBox.l+dims.x;
viewBox.t = viewBox.b+dims.y;
return flags;
}
#endif
#ifdef MSDFGEN_USE_DROPXML
int parseSvgShape(Shape &output, Shape::Bounds &viewBox, const char *svgData, size_t svgLength) {
class SvgConsumer : public BaseSvgConsumer {
enum Element {
BEGINNING,
IGNORED,
SVG,
G,
PATH,
RECT,
CIRCLE,
ELLIPSE,
POLYGON
} curElement;
// Current element attributes
struct ElementData {
StrRange transform, transformOrigin;
Vector2 pos, dims, radius;
StrRange pathDef;
bool fillRuleEvenOdd;
ElementData() : fillRuleEvenOdd(false) { }
} elem;
int ignoredDepth;
SkMatrix transformation;
std::stack<SkMatrix> transformationStack;
public:
int flags;
Vector2 dimensions;
Shape::Bounds viewBox;
SkPath fullPath;
SvgConsumer() : curElement(BEGINNING), ignoredDepth(0), flags(0), viewBox() { }
bool enterElement(const char *nameStart, const char *nameEnd) {
if (ignoredDepth) {
++ignoredDepth;
return true;
}
if (curElement == BEGINNING && SVG_NAME_IS("svg"))
curElement = SVG;
else if (SVG_NAME_IS("g"))
curElement = G;
else if (SVG_NAME_IS("path"))
curElement = PATH;
else if (SVG_NAME_IS("rect"))
curElement = RECT;
else if (SVG_NAME_IS("circle"))
curElement = CIRCLE;
else if (SVG_NAME_IS("ellipse"))
curElement = ELLIPSE;
else if (SVG_NAME_IS("polygon"))
curElement = POLYGON;
else {
curElement = IGNORED;
++ignoredDepth;
if (SVG_NAME_IS("mask") || SVG_NAME_IS("use"))
flags |= SVG_IMPORT_UNSUPPORTED_FEATURE_FLAG;
}
if (curElement != IGNORED)
elem = ElementData();
return true;
}
bool leaveElement(const char *nameStart, const char *nameEnd) {
if (ignoredDepth) {
--ignoredDepth;
return true;
}
if (SVG_NAME_IS("g")) {
if (transformationStack.empty())
return false;
transformation = transformationStack.top();
transformationStack.pop();
}
return true;
}
bool elementAttribute(const char *nameStart, const char *nameEnd, const char *valueStart, const char *valueEnd) {
switch (curElement) {
case BEGINNING:
case IGNORED:
break;
case SVG:
if (SVG_NAME_IS("width"))
dimensions.x = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("height"))
dimensions.y = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("viewBox")) {
std::string viewBoxStr(SVG_DEC_VAL());
const char *strPtr = viewBoxStr.c_str();
double w = 0, h = 0;
readDouble(viewBox.l, strPtr) && readDouble(viewBox.b, strPtr) && readDouble(w, strPtr) && readDouble(h, strPtr);
viewBox.r = viewBox.l+w;
viewBox.t = viewBox.b+h;
}
break;
case G:
break;
case PATH:
if (SVG_NAME_IS("d"))
elem.pathDef = StrRange(valueStart, valueEnd);
break;
case RECT:
if (SVG_NAME_IS("x"))
elem.pos.x = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("y"))
elem.pos.y = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("width"))
elem.dims.x = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("height"))
elem.dims.y = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("rx"))
elem.radius.x = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("ry"))
elem.radius.y = SVG_DOUBLEVAL();
break;
case CIRCLE:
if (SVG_NAME_IS("cx"))
elem.pos.x = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("cy"))
elem.pos.y = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("r"))
elem.radius.x = SVG_DOUBLEVAL();
break;
case ELLIPSE:
if (SVG_NAME_IS("cx"))
elem.pos.x = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("cy"))
elem.pos.y = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("rx"))
elem.radius.x = SVG_DOUBLEVAL();
else if (SVG_NAME_IS("ry"))
elem.radius.y = SVG_DOUBLEVAL();
break;
case POLYGON:
if (SVG_NAME_IS("points"))
elem.pathDef = StrRange(valueStart, valueEnd);
break;
}
switch (curElement) {
case PATH:
case RECT:
case CIRCLE:
case ELLIPSE:
case POLYGON:
if (SVG_NAME_IS("fill-rule"))
elem.fillRuleEvenOdd = SVG_DEC_VAL() == "evenodd";
// fallthrough
case G:
if (SVG_NAME_IS("transform"))
elem.transform = StrRange(valueStart, valueEnd);
else if (SVG_NAME_IS("transform-origin"))
elem.transformOrigin = StrRange(valueStart, valueEnd);
break;
default:;
}
return true;
}
bool finishAttributes() {
switch (curElement) {
case BEGINNING:
case IGNORED:
case SVG:
break;
case G:
transformationStack.push(transformation);
transformation = combineTransformation(flags, transformation, elem.transform.str().c_str(), elem.transformOrigin.str().c_str());
break;
case PATH:
case RECT:
case CIRCLE:
case ELLIPSE:
case POLYGON:
{
SkPath curPath;
switch (curElement) {
case PATH:
if (!SkParsePath::FromSVGString(elem.pathDef.str().c_str(), &curPath)) {
flags |= SVG_IMPORT_PARTIAL_FAILURE_FLAG;
return true;
}
break;
case RECT:
{
if (!(elem.dims.x && elem.dims.y))
return true;
SkRect rect = SkRect::MakeLTRB(elem.pos.x, elem.pos.y, elem.pos.x+elem.dims.x, elem.pos.y+elem.dims.y);
if (elem.radius.x || elem.radius.y) {
SkScalar rx = SkScalar(elem.radius.x), ry = SkScalar(elem.radius.y);
SkScalar radii[] = { rx, ry, rx, ry, rx, ry, rx, ry };
curPath.addRoundRect(rect, radii);
} else
curPath.addRect(rect);
}
break;
case CIRCLE:
if (!elem.radius.x)
return true;
curPath.addCircle(elem.pos.x, elem.pos.y, elem.radius.x);
break;
case ELLIPSE:
if (!(elem.radius.x && elem.radius.y))
return true;
curPath.addOval(SkRect::MakeLTRB(elem.pos.x-elem.radius.x, elem.pos.y-elem.radius.y, elem.pos.x+elem.radius.x, elem.pos.y+elem.radius.y));
break;
case POLYGON:
{
if (elem.pathDef.start == elem.pathDef.end) {
flags |= SVG_IMPORT_PARTIAL_FAILURE_FLAG;
return true;
}
std::string pdStr = elem.pathDef.str();
const char *pd = pdStr.c_str();
Point2 point;
if (!readCoord(point, pd))
return true;
curPath.moveTo(SkScalar(point.x), SkScalar(point.y));
if (!readCoord(point, pd))
return true;
do {
curPath.lineTo(SkScalar(point.x), SkScalar(point.y));
} while (readCoord(point, pd));
curPath.close();
}
break;
default:
return true;
}
if (elem.fillRuleEvenOdd)
curPath.setFillType(SkPathFillType::kEvenOdd);
curPath.transform(combineTransformation(flags, transformation, elem.transform.str().c_str(), elem.transformOrigin.str().c_str()));
if (Op(fullPath, curPath, kUnion_SkPathOp, &fullPath))
flags |= SVG_IMPORT_SUCCESS_FLAG;
else
flags |= SVG_IMPORT_PARTIAL_FAILURE_FLAG;
}
break;
}
return true;
}
bool finish() {
return !ignoredDepth && transformationStack.empty();
}
};
SvgConsumer svg;
if (!(
dropXML::parse(svg, svgData, svgData+svgLength) &&
(svg.flags&SVG_IMPORT_SUCCESS_FLAG) &&
Simplify(svg.fullPath, &svg.fullPath)
))
return SVG_IMPORT_FAILURE;
shapeFromSkiaPath(output, svg.fullPath);
output.inverseYAxis = true;
output.orientContours();
viewBox = svg.viewBox;
if (svg.dimensions.x > 0 && viewBox.r == viewBox.l)
viewBox.r += svg.dimensions.x;
if (svg.dimensions.y > 0 && viewBox.t == viewBox.b)
viewBox.t += svg.dimensions.y;
return svg.flags;
}
int loadSvgShape(Shape &output, Shape::Bounds &viewBox, const char *filename) {
std::vector<char> svgData;
if (!readFile(svgData, filename))
return SVG_IMPORT_FAILURE;
return parseSvgShape(output, viewBox, svgData.empty() ? NULL : &svgData[0], svgData.size());
}
#endif
#endif
}
#endif