mirror of https://github.com/Chlumsky/msdfgen.git
175 lines
7.3 KiB
C++
175 lines
7.3 KiB
C++
|
|
#include "msdf-artifact-patcher.h"
|
|
|
|
#include <cstring>
|
|
#include <vector>
|
|
#include <utility>
|
|
#include "arithmetics.hpp"
|
|
#include "equation-solver.h"
|
|
#include "bitmap-interpolation.hpp"
|
|
#include "edge-selectors.h"
|
|
#include "contour-combiners.h"
|
|
#include "ShapeDistanceFinder.h"
|
|
|
|
namespace msdfgen {
|
|
|
|
static bool isHotspot(float am, float bm, float xm) {
|
|
return (am > .5f && bm > .5f && xm < .5f) || (am < .5f && bm < .5f && xm > .5f);
|
|
// A much more aggressive version for the entire distance field (not just edges): return median(am, bm, xm) != xm;
|
|
}
|
|
|
|
static int findLinearChannelHotspots(double t[1], const float *a, const float *b, float dA, float dB) {
|
|
int found = 0;
|
|
double x = (double) dA/(dA-dB);
|
|
if (x > 0 && x < 1) {
|
|
float am = median(a[0], a[1], a[2]);
|
|
float bm = median(b[0], b[1], b[2]);
|
|
float xm = median(
|
|
mix(a[0], b[0], x),
|
|
mix(a[1], b[1], x),
|
|
mix(a[2], b[2], x)
|
|
);
|
|
if (isHotspot(am, bm, xm))
|
|
t[found++] = x;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static int findDiagonalChannelHotspots(double t[2], const float *a, const float *b, const float *c, const float *d, float dA, float dB, float dC, float dD) {
|
|
int found = 0;
|
|
double x[2];
|
|
int solutions = solveQuadratic(x, (dD-dC)-(dB-dA), dC+dB-2*dA, dA);
|
|
for (int i = 0; i < solutions; ++i)
|
|
if (x[i] > 0 && x[i] < 1) {
|
|
float am = median(a[0], a[1], a[2]);
|
|
float dm = median(d[0], d[1], d[2]);
|
|
float xm = median(
|
|
mix(mix(a[0], b[0], x[i]), mix(c[0], d[0], x[i]), x[i]),
|
|
mix(mix(a[1], b[1], x[i]), mix(c[1], d[1], x[i]), x[i]),
|
|
mix(mix(a[2], b[2], x[i]), mix(c[2], d[2], x[i]), x[i])
|
|
);
|
|
if (isHotspot(am, dm, xm))
|
|
t[found++] = x[i];
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static int findLinearHotspots(double t[3], const float *a, const float *b) {
|
|
int found = 0;
|
|
found += findLinearChannelHotspots(t+found, a, b, a[1]-a[0], b[1]-b[0]);
|
|
found += findLinearChannelHotspots(t+found, a, b, a[2]-a[1], b[2]-b[1]);
|
|
found += findLinearChannelHotspots(t+found, a, b, a[0]-a[2], b[0]-b[2]);
|
|
return found;
|
|
}
|
|
|
|
static int findDiagonalHotspots(double t[6], const float *a, const float *b, const float *c, const float *d) {
|
|
int found = 0;
|
|
found += findDiagonalChannelHotspots(t+found, a, b, c, d, a[1]-a[0], b[1]-b[0], c[1]-c[0], d[1]-d[0]);
|
|
found += findDiagonalChannelHotspots(t+found, a, b, c, d, a[2]-a[1], b[2]-b[1], c[2]-c[1], d[2]-d[1]);
|
|
found += findDiagonalChannelHotspots(t+found, a, b, c, d, a[0]-a[2], b[0]-b[2], c[0]-c[2], d[0]-d[2]);
|
|
return found;
|
|
}
|
|
|
|
template <int N>
|
|
void findHotspots(std::vector<Point2> &hotspots, const BitmapConstRef<float, N> &sdf) {
|
|
// All hotspots intersect either the horizontal, vertical, or diagonal line that connects neighboring texels
|
|
// Horizontal:
|
|
for (int y = 0; y < sdf.height; ++y) {
|
|
const float *left = sdf(0, y);
|
|
const float *right = sdf(1, y);
|
|
for (int x = 0; x < sdf.width-1; ++x) {
|
|
double t[3];
|
|
int found = findLinearHotspots(t, left, right);
|
|
for (int i = 0; i < found; ++i)
|
|
hotspots.push_back(Point2(x+.5+t[i], y+.5));
|
|
left += N, right += N;
|
|
}
|
|
}
|
|
// Vertical:
|
|
for (int y = 0; y < sdf.height-1; ++y) {
|
|
const float *bottom = sdf(0, y);
|
|
const float *top = sdf(0, y+1);
|
|
for (int x = 0; x < sdf.width; ++x) {
|
|
double t[3];
|
|
int found = findLinearHotspots(t, bottom, top);
|
|
for (int i = 0; i < found; ++i)
|
|
hotspots.push_back(Point2(x+.5, y+.5+t[i]));
|
|
bottom += N, top += N;
|
|
}
|
|
}
|
|
// Diagonal:
|
|
for (int y = 0; y < sdf.height-1; ++y) {
|
|
const float *lb = sdf(0, y);
|
|
const float *rb = sdf(1, y);
|
|
const float *lt = sdf(0, y+1);
|
|
const float *rt = sdf(1, y+1);
|
|
for (int x = 0; x < sdf.width-1; ++x) {
|
|
double t[6];
|
|
int found = 0;
|
|
found = findDiagonalHotspots(t, lb, rb, lt, rt);
|
|
for (int i = 0; i < found; ++i)
|
|
hotspots.push_back(Point2(x+.5+t[i], y+.5+t[i]));
|
|
found = findDiagonalHotspots(t, lt, rt, lb, rb);
|
|
for (int i = 0; i < found; ++i)
|
|
hotspots.push_back(Point2(x+.5+t[i], y+1.5-t[i]));
|
|
lb += N, rb += N, lt += N, rt += N;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <template <typename> class ContourCombiner, int N>
|
|
static void msdfPatchArtifactsInner(const BitmapRef<float, N> &sdf, const Shape &shape, const Projection &projection, double range) {
|
|
ShapeDistanceFinder<ContourCombiner<PseudoDistanceSelector> > distanceFinder(shape);
|
|
std::vector<Point2> hotspots;
|
|
findHotspots(hotspots, BitmapConstRef<float, N>(sdf));
|
|
std::vector<std::pair<int, int> > artifacts;
|
|
artifacts.reserve(hotspots.size());
|
|
for (std::vector<Point2>::const_iterator hotspot = hotspots.begin(); hotspot != hotspots.end(); ++hotspot) {
|
|
Point2 pos = projection.unproject(*hotspot);
|
|
double actualDistance = distanceFinder.distance(pos);
|
|
float sd = float(actualDistance/range+.5);
|
|
|
|
// Store hotspot's closest texel's current color
|
|
float *subject = sdf((int) hotspot->x, (int) hotspot->y);
|
|
float texel[N];
|
|
memcpy(texel, subject, N*sizeof(float));
|
|
// Sample signed distance at hotspot
|
|
float msd[N];
|
|
interpolate(msd, BitmapConstRef<float, N>(sdf), *hotspot);
|
|
float oldSsd = median(msd[0], msd[1], msd[2]);
|
|
// Flatten hotspot's closest texel
|
|
float med = median(subject[0], subject[1], subject[2]);
|
|
subject[0] = med, subject[1] = med, subject[2] = med;
|
|
// Sample signed distance at hotspot after flattening
|
|
interpolate(msd, BitmapConstRef<float, N>(sdf), *hotspot);
|
|
float newSsd = median(msd[0], msd[1], msd[2]);
|
|
// Revert modified texel
|
|
memcpy(subject, texel, N*sizeof(float));
|
|
|
|
// Consider hotspot an artifact if flattening improved the sample
|
|
if (fabsf(newSsd-sd) < fabsf(oldSsd-sd))
|
|
artifacts.push_back(std::make_pair((int) hotspot->x, (int) hotspot->y));
|
|
}
|
|
for (std::vector<std::pair<int, int> >::const_iterator artifact = artifacts.begin(); artifact != artifacts.end(); ++artifact) {
|
|
float *pixel = sdf(artifact->first, artifact->second);
|
|
float med = median(pixel[0], pixel[1], pixel[2]);
|
|
pixel[0] = med, pixel[1] = med, pixel[2] = med;
|
|
}
|
|
}
|
|
|
|
void msdfPatchArtifacts(const BitmapRef<float, 3> &sdf, const Shape &shape, const Projection &projection, double range, const GeneratorConfig &generatorConfig, const ArtifactPatcherConfig &config) {
|
|
if (generatorConfig.overlapSupport)
|
|
msdfPatchArtifactsInner<OverlappingContourCombiner>(sdf, shape, projection, range);
|
|
else
|
|
msdfPatchArtifactsInner<SimpleContourCombiner>(sdf, shape, projection, range);
|
|
}
|
|
|
|
void msdfPatchArtifacts(const BitmapRef<float, 4> &sdf, const Shape &shape, const Projection &projection, double range, const GeneratorConfig &generatorConfig, const ArtifactPatcherConfig &config) {
|
|
if (generatorConfig.overlapSupport)
|
|
msdfPatchArtifactsInner<OverlappingContourCombiner>(sdf, shape, projection, range);
|
|
else
|
|
msdfPatchArtifactsInner<SimpleContourCombiner>(sdf, shape, projection, range);
|
|
}
|
|
|
|
}
|