msdfgen/core/approximate-sdf.cpp

222 lines
9.4 KiB
C++

#include "approximate-sdf.h"
#include <cmath>
#include <queue>
#include "arithmetics.hpp"
#define ESTSDF_MAX_DIST 1e24f // Cannot be FLT_MAX because it might be divided by range, which could be < 1
namespace msdfgen {
void approximateSDF(const BitmapRef<float, 1> &output, const Shape &shape, const Projection &projection, double outerRange, double innerRange) {
struct Entry {
float absDist;
int bitmapX, bitmapY;
Point2 nearPoint;
bool operator<(const Entry &other) const {
return absDist > other.absDist;
}
} entry;
float *firstRow = output.pixels;
ptrdiff_t stride = output.width;
if (shape.inverseYAxis) {
firstRow += (output.height-1)*stride;
stride = -stride;
}
#define ESTSDF_PIXEL_AT(x, y) ((firstRow+(y)*stride)[x])
for (float *p = output.pixels, *end = output.pixels+output.width*output.height; p < end; ++p)
*p = -ESTSDF_MAX_DIST;
Vector2 invScale = projection.unprojectVector(Vector2(1));
float dLimit = float(max(outerRange, innerRange));
std::priority_queue<Entry> queue;
double x[3], y[3];
int dx[3], dy[3];
// Horizontal scanlines
for (int bitmapY = 0; bitmapY < output.height; ++bitmapY) {
float *row = firstRow+bitmapY*stride;
double y = projection.unprojectY(bitmapY+.5);
entry.bitmapY = bitmapY;
for (std::vector<Contour>::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) {
int n = (*edge)->horizontalScanlineIntersections(x, dy, y);
for (int i = 0; i < n; ++i) {
double bitmapX = projection.projectX(x[i]);
double bitmapX0 = floor(bitmapX-.5)+.5;
double bitmapX1 = bitmapX0+1;
if (bitmapX1 > 0 && bitmapX0 < output.width) {
float sd0 = float(dy[i]*invScale.x*(bitmapX0-bitmapX));
float sd1 = float(dy[i]*invScale.x*(bitmapX1-bitmapX));
if (sd0 == 0.f) {
if (sd1 == 0.f)
continue;
sd0 = -.000001f*float(sign(sd1));
}
if (sd1 == 0.f)
sd1 = -.000001f*float(sign(sd0));
if (bitmapX0 > 0) {
entry.absDist = fabsf(sd0);
entry.bitmapX = int(bitmapX0);
float &sd = row[entry.bitmapX];
if (entry.absDist < fabsf(sd)) {
sd = sd0;
entry.nearPoint = Point2(x[i], y);
queue.push(entry);
} else if (sd == -sd0)
sd = -ESTSDF_MAX_DIST;
}
if (bitmapX1 < output.width) {
entry.absDist = fabsf(sd1);
entry.bitmapX = int(bitmapX1);
float &sd = row[entry.bitmapX];
if (entry.absDist < fabsf(sd)) {
sd = sd1;
entry.nearPoint = Point2(x[i], y);
queue.push(entry);
} else if (sd == -sd1)
sd = -ESTSDF_MAX_DIST;
}
}
}
}
}
}
// Bake in distance signs
for (int y = 0; y < output.height; ++y) {
float *row = firstRow+y*stride;
int x = 0;
for (; x < output.width && row[x] == -ESTSDF_MAX_DIST; ++x);
if (x < output.width) {
bool flip = row[x] > 0;
if (flip) {
for (int i = 0; i < x; ++i)
row[i] = ESTSDF_MAX_DIST;
}
for (; x < output.width; ++x) {
if (row[x] != -ESTSDF_MAX_DIST)
flip = row[x] > 0;
else if (flip)
row[x] = ESTSDF_MAX_DIST;
}
}
}
// Vertical scanlines
for (int bitmapX = 0; bitmapX < output.width; ++bitmapX) {
double x = projection.unprojectX(bitmapX+.5);
entry.bitmapX = bitmapX;
for (std::vector<Contour>::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) {
int n = (*edge)->verticalScanlineIntersections(y, dx, x);
for (int i = 0; i < n; ++i) {
double bitmapY = projection.projectY(y[i]);
double bitmapY0 = floor(bitmapY-.5)+.5;
double bitmapY1 = bitmapY0+1;
if (bitmapY0 > 0 && bitmapY1 < output.height) {
float sd0 = float(dx[i]*invScale.y*(bitmapY-bitmapY0));
float sd1 = float(dx[i]*invScale.y*(bitmapY-bitmapY1));
if (sd0 == 0.f) {
if (sd1 == 0.f)
continue;
sd0 = -.000001f*float(sign(sd1));
}
if (sd1 == 0.f)
sd1 = -.000001f*float(sign(sd0));
if (bitmapY0 > 0) {
entry.absDist = fabsf(sd0);
entry.bitmapY = int(bitmapY0);
float &sd = ESTSDF_PIXEL_AT(bitmapX, entry.bitmapY);
if (entry.absDist < fabsf(sd)) {
sd = sd0;
entry.nearPoint = Point2(x, y[i]);
queue.push(entry);
}
}
if (bitmapY1 < output.height) {
entry.absDist = fabsf(sd1);
entry.bitmapY = int(bitmapY1);
float &sd = ESTSDF_PIXEL_AT(bitmapX, entry.bitmapY);
if (entry.absDist < fabsf(sd)) {
sd = sd1;
entry.nearPoint = Point2(x, y[i]);
queue.push(entry);
}
}
}
}
}
}
}
if (queue.empty())
return;
while (!queue.empty()) {
Entry entry = queue.top();
queue.pop();
Entry newEntry = entry;
newEntry.bitmapX = entry.bitmapX-1;
if (newEntry.bitmapX >= 0) {
float &sd = ESTSDF_PIXEL_AT(newEntry.bitmapX, newEntry.bitmapY);
if (fabsf(sd) == ESTSDF_MAX_DIST) {
Point2 shapeCoord = projection.unproject(Point2(newEntry.bitmapX+.5, newEntry.bitmapY+.5));
newEntry.absDist = float((shapeCoord-entry.nearPoint).length());
sd = float(sign(sd))*newEntry.absDist;
if (newEntry.absDist < dLimit)
queue.push(newEntry);
}
}
newEntry.bitmapX = entry.bitmapX+1;
if (newEntry.bitmapX < output.width) {
float &sd = ESTSDF_PIXEL_AT(newEntry.bitmapX, newEntry.bitmapY);
if (fabsf(sd) == ESTSDF_MAX_DIST) {
Point2 shapeCoord = projection.unproject(Point2(newEntry.bitmapX+.5, newEntry.bitmapY+.5));
newEntry.absDist = float((shapeCoord-entry.nearPoint).length());
sd = float(sign(sd))*newEntry.absDist;
if (newEntry.absDist < dLimit)
queue.push(newEntry);
}
}
newEntry.bitmapX = entry.bitmapX;
newEntry.bitmapY = entry.bitmapY-1;
if (newEntry.bitmapY >= 0) {
float &sd = ESTSDF_PIXEL_AT(newEntry.bitmapX, newEntry.bitmapY);
if (fabsf(sd) == ESTSDF_MAX_DIST) {
Point2 shapeCoord = projection.unproject(Point2(newEntry.bitmapX+.5, newEntry.bitmapY+.5));
newEntry.absDist = float((shapeCoord-entry.nearPoint).length());
sd = float(sign(sd))*newEntry.absDist;
if (newEntry.absDist < dLimit)
queue.push(newEntry);
}
}
newEntry.bitmapY = entry.bitmapY+1;
if (newEntry.bitmapY < output.height) {
float &sd = ESTSDF_PIXEL_AT(newEntry.bitmapX, newEntry.bitmapY);
if (fabsf(sd) == ESTSDF_MAX_DIST) {
Point2 shapeCoord = projection.unproject(Point2(newEntry.bitmapX+.5, newEntry.bitmapY+.5));
newEntry.absDist = float((shapeCoord-entry.nearPoint).length());
sd = float(sign(sd))*newEntry.absDist;
if (newEntry.absDist < dLimit)
queue.push(newEntry);
}
}
}
float rangeFactor = 1.f/float(outerRange+innerRange);
float zeroBias = rangeFactor*float(outerRange);
for (float *p = output.pixels, *end = output.pixels+output.width*output.height; p < end; ++p)
*p = rangeFactor**p+zeroBias;
}
void approximateSDF(const BitmapRef<float, 1> &output, const Shape &shape, const Projection &projection, double range) {
approximateSDF(output, shape, projection, .5*range, .5*range);
}
}