msdfgen/core/convergent-curve-ordering.cpp

141 lines
5.7 KiB
C++

#include "convergent-curve-ordering.h"
#include "arithmetics.hpp"
#include "Vector2.hpp"
/*
* For non-degenerate curves A(t), B(t) (ones where all control points are distinct) both originating at P = A(0) = B(0) = *corner,
* we are computing the limit of
*
* sign(crossProduct( A(t / |A'(0)|) - P, B(t / |B'(0)|) - P ))
*
* for t -> 0 from 1. Of note is that the curves' parameter has to be normed by the first derivative at P,
* which ensures that the limit approaches P at the same rate along both curves - omitting this was the main error of earlier versions of deconverge.
*
* For degenerate cubic curves (ones where the first control point equals the origin point), the denominator |A'(0)| is zero,
* so to address that, we approach with the square root of t and use the derivative of A(sqrt(t)), which at t = 0 equals A''(0)/2
* Therefore, in these cases, we replace one factor of the cross product with A(sqrt(2*t / |A''(0)|)) - P
*
* The cross product results in a polynomial (in respect to t or t^2 in the degenerate case),
* the limit of sign of which at zero can be determined by the lowest order non-zero derivative,
* which equals to the sign of the first non-zero polynomial coefficient in the order of increasing exponents.
*
* The polynomial's constant and linear terms are zero, so the first derivative is definitely zero as well.
* The second derivative is assumed to be zero (or near zero) due to the curves being convergent - this is an input requirement
* (otherwise the correct result is the sign of the cross product of their directions at t = 0).
* Therefore, we skip the first and second derivatives.
*/
namespace msdfgen {
static void simplifyDegenerateCurve(Point2 *controlPoints, int &order) {
if (order == 3 && (controlPoints[1] == controlPoints[0] || controlPoints[1] == controlPoints[3]) && (controlPoints[2] == controlPoints[0] || controlPoints[2] == controlPoints[3])) {
controlPoints[1] = controlPoints[3];
order = 1;
}
if (order == 2 && (controlPoints[1] == controlPoints[0] || controlPoints[1] == controlPoints[2])) {
controlPoints[1] = controlPoints[2];
order = 1;
}
if (order == 1 && controlPoints[0] == controlPoints[1])
order = 0;
}
int convergentCurveOrdering(const Point2 *corner, int controlPointsBefore, int controlPointsAfter) {
if (!(controlPointsBefore > 0 && controlPointsAfter > 0))
return 0;
Vector2 a1, a2, a3, b1, b2, b3;
a1 = *(corner-1)-*corner;
b1 = *(corner+1)-*corner;
if (controlPointsBefore >= 2)
a2 = *(corner-2)-*(corner-1)-a1;
if (controlPointsAfter >= 2)
b2 = *(corner+2)-*(corner+1)-b1;
if (controlPointsBefore >= 3) {
a3 = *(corner-3)-*(corner-2)-(*(corner-2)-*(corner-1))-a2;
a2 *= 3;
}
if (controlPointsAfter >= 3) {
b3 = *(corner+3)-*(corner+2)-(*(corner+2)-*(corner+1))-b2;
b2 *= 3;
}
a1 *= controlPointsBefore;
b1 *= controlPointsAfter;
// Non-degenerate case
if (a1 && b1) {
double as = a1.length();
double bs = b1.length();
// Third derivative
if (double d = as*crossProduct(a1, b2) + bs*crossProduct(a2, b1))
return sign(d);
// Fourth derivative
if (double d = as*as*crossProduct(a1, b3) + as*bs*crossProduct(a2, b2) + bs*bs*crossProduct(a3, b1))
return sign(d);
// Fifth derivative
if (double d = as*crossProduct(a2, b3) + bs*crossProduct(a3, b2))
return sign(d);
// Sixth derivative
return sign(crossProduct(a3, b3));
}
// Degenerate curve after corner (control point after corner equals corner)
int s = 1;
if (a1) { // !b1
// Swap aN <-> bN and handle in if (b1)
b1 = a1;
a1 = b2, b2 = a2, a2 = a1;
a1 = b3, b3 = a3, a3 = a1;
s = -1; // make sure to also flip output
}
// Degenerate curve before corner (control point before corner equals corner)
if (b1) { // !a1
// Two-and-a-half-th derivative
if (double d = crossProduct(a3, b1))
return s*sign(d);
// Third derivative
if (double d = crossProduct(a2, b2))
return s*sign(d);
// Three-and-a-half-th derivative
if (double d = crossProduct(a3, b2))
return s*sign(d);
// Fourth derivative
if (double d = crossProduct(a2, b3))
return s*sign(d);
// Four-and-a-half-th derivative
return s*sign(crossProduct(a3, b3));
}
// Degenerate curves on both sides of the corner (control point before and after corner equals corner)
{ // !a1 && !b1
// Two-and-a-half-th derivative
if (double d = sqrt(a2.length())*crossProduct(a2, b3) + sqrt(b2.length())*crossProduct(a3, b2))
return sign(d);
// Third derivative
return sign(crossProduct(a3, b3));
}
}
int convergentCurveOrdering(const EdgeSegment *a, const EdgeSegment *b) {
Point2 controlPoints[12];
Point2 *corner = controlPoints+4;
Point2 *aCpTmp = controlPoints+8;
int aOrder = int(a->type());
int bOrder = int(b->type());
if (!(aOrder >= 1 && aOrder <= 3 && bOrder >= 1 && bOrder <= 3)) {
// Not implemented - only linear, quadratic, and cubic curves supported
return 0;
}
for (int i = 0; i <= aOrder; ++i)
aCpTmp[i] = a->controlPoints()[i];
for (int i = 0; i <= bOrder; ++i)
corner[i] = b->controlPoints()[i];
if (aCpTmp[aOrder] != *corner)
return 0;
simplifyDegenerateCurve(aCpTmp, aOrder);
simplifyDegenerateCurve(corner, bOrder);
for (int i = 0; i < aOrder; ++i)
corner[i-aOrder] = aCpTmp[i];
return convergentCurveOrdering(corner, aOrder, bOrder);
}
}