msdfgen/core/bezier-solver.hpp

95 lines
2.9 KiB
C++

#pragma once
#include <cmath>
#include "Vector2.hpp"
// Parameters for iterative search of closest point on a cubic Bezier curve. Increase for higher precision.
#define MSDFGEN_CUBIC_SEARCH_STARTS 4
#define MSDFGEN_CUBIC_SEARCH_STEPS 4
#define MSDFGEN_QUADRATIC_RATIO_LIMIT 1e8
#ifndef MSDFGEN_CUBE_ROOT
#define MSDFGEN_CUBE_ROOT(x) pow((x), 1/3.)
#endif
namespace msdfgen {
/**
* Returns the parameter for the quadratic Bezier curve (P0, P1, P2) for the point closest to point P. May be outside the (0, 1) range.
* p = P-P0
* q = 2*P1-2*P0
* r = P2-2*P1+P0
*/
inline double quadraticNearPoint(const Vector2 p, const Vector2 q, const Vector2 r) {
double qq = q.squaredLength();
double rr = r.squaredLength();
if (qq >= MSDFGEN_QUADRATIC_RATIO_LIMIT*rr)
return dotProduct(p, q)/qq;
double norm = .5/rr;
double a = 3*norm*dotProduct(q, r);
double b = norm*(qq-2*dotProduct(p, r));
double c = norm*dotProduct(p, q);
double aa = a*a;
double g = 1/9.*(aa-3*b);
double h = 1/54.*(a*(aa+aa-9*b)-27*c);
double hh = h*h;
double ggg = g*g*g;
a *= 1/3.;
if (hh < ggg) {
double u = 1/3.*acos(h/sqrt(ggg));
g = -2*sqrt(g);
if (h >= 0) {
double t = g*cos(u)-a;
if (t >= 0)
return t;
return g*cos(u+2.0943951023931954923)-a; // 2.094 = PI*2/3
} else {
double t = g*cos(u+2.0943951023931954923)-a;
if (t <= 1)
return t;
return g*cos(u)-a;
}
}
double s = (h < 0 ? 1. : -1.)*MSDFGEN_CUBE_ROOT(fabs(h)+sqrt(hh-ggg));
return s+g/s-a;
}
/**
* Returns the parameter for the cubic Bezier curve (P0, P1, P2, P3) for the point closest to point P. Squared distance is provided as optional output parameter.
* p = P-P0
* q = 3*P1-3*P0
* r = 3*P2-6*P1+3*P0
* s = P3-3*P2+3*P1-P0
*/
inline double cubicNearPoint(const Vector2 p, const Vector2 q, const Vector2 r, const Vector2 s, double &squaredDistance) {
squaredDistance = p.squaredLength();
double bestT = 0;
for (int i = 0; i <= MSDFGEN_CUBIC_SEARCH_STARTS; ++i) {
double t = 1./MSDFGEN_CUBIC_SEARCH_STARTS*i;
Vector2 curP = p-(q+(r+s*t)*t)*t;
for (int step = 0; step < MSDFGEN_CUBIC_SEARCH_STEPS; ++step) {
Vector2 d0 = q+(r+r+3*s*t)*t;
Vector2 d1 = r+r+6*s*t;
t += dotProduct(curP, d0)/(d0.squaredLength()-dotProduct(curP, d1));
if (t <= 0 || t >= 1)
break;
curP = p-(q+(r+s*t)*t)*t;
double curSquaredDistance = curP.squaredLength();
if (curSquaredDistance < squaredDistance) {
squaredDistance = curSquaredDistance;
bestT = t;
}
}
}
return bestT;
}
inline double cubicNearPoint(const Vector2 p, const Vector2 q, const Vector2 r, const Vector2 s) {
double squaredDistance;
return cubicNearPoint(p, q, r, s, squaredDistance);
}
}