Edge coloring by edge to edge distance - experimental version

This commit is contained in:
Chlumsky 2021-05-28 19:26:41 +02:00
parent dc36f7140e
commit acb01df098
3 changed files with 289 additions and 1 deletions

View File

@ -1,6 +1,12 @@
#include "edge-coloring.h"
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <queue>
#include "arithmetics.hpp"
namespace msdfgen {
static bool isCorner(const Vector2 &aDir, const Vector2 &bDir, double crossThreshold) {
@ -215,4 +221,279 @@ void edgeColoringInkTrap(Shape &shape, double angleThreshold, unsigned long long
}
}
// EDGE COLORING BY DISTANCE - EXPERIMENTAL IMPLEMENTATION - WORK IN PROGRESS
#define MAX_RECOLOR_STEPS 16
#define EDGE_DISTANCE_PRECISION 16
static double edgeToEdgeDistance(const EdgeSegment &a, const EdgeSegment &b, int precision) {
if (a.point(0) == b.point(0) || a.point(0) == b.point(1) || a.point(1) == b.point(0) || a.point(1) == b.point(1))
return 0;
double iFac = 1./precision;
double minDistance = (b.point(0)-a.point(0)).length();
for (int i = 0; i <= precision; ++i) {
double t = iFac*i;
double d = fabs(a.signedDistance(b.point(t), t).distance);
minDistance = min(minDistance, d);
}
for (int i = 0; i <= precision; ++i) {
double t = iFac*i;
double d = fabs(b.signedDistance(a.point(t), t).distance);
minDistance = min(minDistance, d);
}
return minDistance;
}
static double splineToSplineDistance(EdgeSegment * const *edgeSegments, int aStart, int aEnd, int bStart, int bEnd, int precision) {
double minDistance = fabs(SignedDistance::INFINITE.distance);
for (int ai = aStart; ai < aEnd; ++ai)
for (int bi = bStart; bi < bEnd && minDistance; ++bi) {
double d = edgeToEdgeDistance(*edgeSegments[ai], *edgeSegments[bi], precision);
minDistance = min(minDistance, d);
}
return minDistance;
}
static void colorSecondDegreeGraph(int *coloring, const int * const *edgeMatrix, int vertexCount, unsigned long long seed) {
for (int i = 0; i < vertexCount; ++i) {
int possibleColors = 7;
for (int j = 0; j < i; ++j) {
if (edgeMatrix[i][j])
possibleColors &= ~(1<<coloring[j]);
}
int color = 0;
switch (possibleColors) {
case 1:
color = 0;
break;
case 2:
color = 1;
break;
case 3:
color = (int) seed&1;
seed >>= 1;
break;
case 4:
color = 2;
break;
case 5:
color = ((int) seed+1&1)<<1;
seed >>= 1;
break;
case 6:
color = ((int) seed&1)+1;
seed >>= 1;
break;
case 7:
color = int((seed+i)%3);
seed /= 3;
break;
}
coloring[i] = color;
}
}
static int vertexPossibleColors(const int *coloring, const int *edgeVector, int vertexCount) {
int usedColors = 0;
for (int i = 0; i < vertexCount; ++i)
if (edgeVector[i])
usedColors |= 1<<coloring[i];
return 7&~usedColors;
}
static void uncolorSameNeighbors(std::queue<int> &uncolored, int *coloring, const int * const *edgeMatrix, int vertex, int vertexCount) {
for (int i = vertex+1; i < vertexCount; ++i) {
if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
coloring[i] = -1;
uncolored.push(i);
}
}
for (int i = 0; i < vertex; ++i) {
if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
coloring[i] = -1;
uncolored.push(i);
}
}
}
static bool tryAddEdge(int *coloring, int * const *edgeMatrix, int vertexCount, int vertexA, int vertexB, int *coloringBuffer) {
static const int FIRST_POSSIBLE_COLOR[8] = { -1, 0, 1, 0, 2, 2, 1, 0 };
edgeMatrix[vertexA][vertexB] = 1;
edgeMatrix[vertexB][vertexA] = 1;
if (coloring[vertexA] != coloring[vertexB])
return true;
int bPossibleColors = vertexPossibleColors(coloring, edgeMatrix[vertexB], vertexCount);
if (bPossibleColors) {
coloring[vertexB] = FIRST_POSSIBLE_COLOR[bPossibleColors];
return true;
}
memcpy(coloringBuffer, coloring, sizeof(int)*vertexCount);
std::queue<int> uncolored;
{
int *coloring = coloringBuffer;
coloring[vertexB] = FIRST_POSSIBLE_COLOR[7&~(1<<coloring[vertexA])];
uncolorSameNeighbors(uncolored, coloring, edgeMatrix, vertexB, vertexCount);
int step = 0;
while (!uncolored.empty() && step < MAX_RECOLOR_STEPS) {
int i = uncolored.front();
uncolored.pop();
int possibleColors = vertexPossibleColors(coloring, edgeMatrix[i], vertexCount);
if (possibleColors) {
coloring[i] = FIRST_POSSIBLE_COLOR[possibleColors];
continue;
}
do {
coloring[i] = step++%3;
} while (edgeMatrix[i][vertexA] && coloring[i] == coloring[vertexA]);
uncolorSameNeighbors(uncolored, coloring, edgeMatrix, i, vertexCount);
}
}
if (!uncolored.empty()) {
edgeMatrix[vertexA][vertexB] = 0;
edgeMatrix[vertexB][vertexA] = 0;
return false;
}
memcpy(coloring, coloringBuffer, sizeof(int)*vertexCount);
return true;
}
static int cmpDoublePtr(const void *a, const void *b) {
return sign(**reinterpret_cast<const double * const *>(a)-**reinterpret_cast<const double * const *>(b));
}
void edgeColoringByDistance(Shape &shape, double angleThreshold, unsigned long long seed) {
std::vector<EdgeSegment *> edgeSegments;
std::vector<int> splineStarts;
double crossThreshold = sin(angleThreshold);
std::vector<int> corners;
for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour)
if (!contour->edges.empty()) {
// Identify corners
corners.clear();
Vector2 prevDirection = contour->edges.back()->direction(1);
int index = 0;
for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold))
corners.push_back(index);
prevDirection = (*edge)->direction(1);
}
splineStarts.push_back((int) edgeSegments.size());
// Smooth contour
if (corners.empty())
for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
edgeSegments.push_back(&**edge);
// "Teardrop" case
else if (corners.size() == 1) {
int corner = corners[0];
if (contour->edges.size() >= 3) {
int m = (int) contour->edges.size();
for (int i = 0; i < m; ++i) {
if (i == m/2)
splineStarts.push_back((int) edgeSegments.size());
if (int(3+2.875*i/(m-1)-1.4375+.5)-3)
edgeSegments.push_back(&*contour->edges[(corner+i)%m]);
else
contour->edges[(corner+i)%m]->color = WHITE;
}
} else if (contour->edges.size() >= 1) {
// Less than three edge segments for three colors => edges must be split
EdgeSegment *parts[7] = { };
contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
if (contour->edges.size() >= 2) {
contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
edgeSegments.push_back(parts[0]);
edgeSegments.push_back(parts[1]);
parts[2]->color = parts[3]->color = WHITE;
splineStarts.push_back((int) edgeSegments.size());
edgeSegments.push_back(parts[4]);
edgeSegments.push_back(parts[5]);
} else {
edgeSegments.push_back(parts[0]);
parts[1]->color = WHITE;
splineStarts.push_back((int) edgeSegments.size());
edgeSegments.push_back(parts[2]);
}
contour->edges.clear();
for (int i = 0; parts[i]; ++i)
contour->edges.push_back(EdgeHolder(parts[i]));
}
}
// Multiple corners
else {
int cornerCount = (int) corners.size();
int spline = 0;
int start = corners[0];
int m = (int) contour->edges.size();
for (int i = 0; i < m; ++i) {
int index = (start+i)%m;
if (spline+1 < cornerCount && corners[spline+1] == index) {
splineStarts.push_back((int) edgeSegments.size());
++spline;
}
edgeSegments.push_back(&*contour->edges[index]);
}
}
}
splineStarts.push_back((int) edgeSegments.size());
int segmentCount = (int) edgeSegments.size();
int splineCount = (int) splineStarts.size()-1;
if (!splineCount)
return;
std::vector<double> distanceMatrixStorage(splineCount*splineCount);
std::vector<double *> distanceMatrix(splineCount);
for (int i = 0; i < splineCount; ++i)
distanceMatrix[i] = &distanceMatrixStorage[i*splineCount];
const double *distanceMatrixBase = &distanceMatrixStorage[0];
for (int i = 0; i < splineCount; ++i) {
distanceMatrix[i][i] = -1;
for (int j = i+1; j < splineCount; ++j) {
double dist = splineToSplineDistance(&edgeSegments[0], splineStarts[i], splineStarts[i+1], splineStarts[j], splineStarts[j+1], EDGE_DISTANCE_PRECISION);
distanceMatrix[i][j] = dist;
distanceMatrix[j][i] = dist;
}
}
std::vector<const double *> graphEdgeDistances;
graphEdgeDistances.reserve(splineCount*(splineCount-1)/2);
for (int i = 0; i < splineCount; ++i)
for (int j = i+1; j < splineCount; ++j)
graphEdgeDistances.push_back(&distanceMatrix[i][j]);
int graphEdgeCount = (int) graphEdgeDistances.size();
if (!graphEdgeDistances.empty())
qsort(&graphEdgeDistances[0], graphEdgeDistances.size(), sizeof(const double *), &cmpDoublePtr);
std::vector<int> edgeMatrixStorage(splineCount*splineCount);
std::vector<int *> edgeMatrix(splineCount);
for (int i = 0; i < splineCount; ++i)
edgeMatrix[i] = &edgeMatrixStorage[i*splineCount];
int nextEdge = 0;
for (; nextEdge < graphEdgeCount && !*graphEdgeDistances[nextEdge]; ++nextEdge) {
int elem = graphEdgeDistances[nextEdge]-distanceMatrixBase;
int row = elem/splineCount;
int col = elem%splineCount;
edgeMatrix[row][col] = 1;
edgeMatrix[col][row] = 1;
}
std::vector<int> coloring(2*splineCount);
colorSecondDegreeGraph(&coloring[0], &edgeMatrix[0], splineCount, seed);
for (; nextEdge < graphEdgeCount; ++nextEdge) {
int elem = graphEdgeDistances[nextEdge]-distanceMatrixBase;
tryAddEdge(&coloring[0], &edgeMatrix[0], splineCount, elem/splineCount, elem%splineCount, &coloring[splineCount]);
}
const EdgeColor colors[3] = { YELLOW, CYAN, MAGENTA };
int spline = -1;
for (int i = 0; i < segmentCount; ++i) {
if (splineStarts[spline+1] == i)
++spline;
edgeSegments[i]->color = colors[coloring[spline]];
}
}
}

View File

@ -20,4 +20,10 @@ void edgeColoringSimple(Shape &shape, double angleThreshold, unsigned long long
*/
void edgeColoringInkTrap(Shape &shape, double angleThreshold, unsigned long long seed = 0);
/** The alternative coloring by distance tries to use different colors for edges that are close together.
* This should theoretically be the best strategy on average. However, since it needs to compute the distance
* between all pairs of edges, and perform a graph optimization task, it is much slower than the rest.
*/
void edgeColoringByDistance(Shape &shape, double angleThreshold, unsigned long long seed = 0);
}

View File

@ -304,7 +304,7 @@ static const char *helpText =
"\tSets the scale used to convert shape units to pixels asymmetrically.\n"
" -autoframe\n"
"\tAutomatically scales (unless specified) and translates the shape to fit.\n"
" -coloringstrategy <simple / inktrap>\n"
" -coloringstrategy <simple / inktrap / distance>\n"
"\tSelects the strategy of the edge coloring heuristic.\n"
" -distanceshift <shift>\n"
"\tShifts all normalized distances in the output distance field by this value.\n"
@ -715,6 +715,7 @@ int main(int argc, const char * const *argv) {
ARG_CASE("-coloringstrategy", 1) {
if (!strcmp(argv[argPos+1], "simple")) edgeColoring = edgeColoringSimple;
else if (!strcmp(argv[argPos+1], "inktrap")) edgeColoring = edgeColoringInkTrap;
else if (!strcmp(argv[argPos+1], "distance")) edgeColoring = edgeColoringByDistance;
else
puts("Unknown coloring strategy specified.");
argPos += 2;