mirror of https://github.com/Chlumsky/msdfgen.git
Corner deconvergence polarity fix
This commit is contained in:
parent
6574da1310
commit
54535fc7c0
|
|
@ -3,6 +3,7 @@
|
||||||
|
|
||||||
#include <cstdlib>
|
#include <cstdlib>
|
||||||
#include "arithmetics.hpp"
|
#include "arithmetics.hpp"
|
||||||
|
#include "convergent-curve-ordering.h"
|
||||||
|
|
||||||
#define DECONVERGE_OVERSHOOT 1.11111111111111111 // moves control points slightly more than necessary to account for floating-point errors
|
#define DECONVERGE_OVERSHOOT 1.11111111111111111 // moves control points slightly more than necessary to account for floating-point errors
|
||||||
|
|
||||||
|
|
@ -79,8 +80,7 @@ void Shape::normalize() {
|
||||||
if (dotProduct(prevDir, curDir) < MSDFGEN_CORNER_DOT_EPSILON-1) {
|
if (dotProduct(prevDir, curDir) < MSDFGEN_CORNER_DOT_EPSILON-1) {
|
||||||
double factor = DECONVERGE_OVERSHOOT*sqrt(1-(MSDFGEN_CORNER_DOT_EPSILON-1)*(MSDFGEN_CORNER_DOT_EPSILON-1))/(MSDFGEN_CORNER_DOT_EPSILON-1);
|
double factor = DECONVERGE_OVERSHOOT*sqrt(1-(MSDFGEN_CORNER_DOT_EPSILON-1)*(MSDFGEN_CORNER_DOT_EPSILON-1))/(MSDFGEN_CORNER_DOT_EPSILON-1);
|
||||||
Vector2 axis = factor*(curDir-prevDir).normalize();
|
Vector2 axis = factor*(curDir-prevDir).normalize();
|
||||||
// Determine curve ordering using third-order derivative (t = 0) of crossProduct((*prevEdge)->point(1-t)-p0, (*edge)->point(t)-p0) where p0 is the corner (*edge)->point(0)
|
if (convergentCurveOrdering(*prevEdge, *edge) < 0)
|
||||||
if (crossProduct((*prevEdge)->directionChange(1), (*edge)->direction(0))+crossProduct((*edge)->directionChange(0), (*prevEdge)->direction(1)) < 0)
|
|
||||||
axis = -axis;
|
axis = -axis;
|
||||||
deconvergeEdge(*prevEdge, 1, axis.getOrthogonal(true));
|
deconvergeEdge(*prevEdge, 1, axis.getOrthogonal(true));
|
||||||
deconvergeEdge(*edge, 0, axis.getOrthogonal(false));
|
deconvergeEdge(*edge, 0, axis.getOrthogonal(false));
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,140 @@
|
||||||
|
|
||||||
|
#include "convergent-curve-ordering.h"
|
||||||
|
|
||||||
|
#include "arithmetics.hpp"
|
||||||
|
#include "Vector2.hpp"
|
||||||
|
|
||||||
|
/*
|
||||||
|
* For non-degenerate curves A(t), B(t) (ones where all control points are distinct) both originating at P = A(0) = B(0) = *corner,
|
||||||
|
* we are computing the limit of
|
||||||
|
*
|
||||||
|
* sign(crossProduct( A(t / |A'(0)|) - P, B(t / |B'(0)|) - P ))
|
||||||
|
*
|
||||||
|
* for t -> 0 from 1. Of note is that the curves' parameter has to be normed by the first derivative at P,
|
||||||
|
* which ensures that the limit approaches P at the same rate along both curves - omitting this was the main error of earlier versions of deconverge.
|
||||||
|
*
|
||||||
|
* For degenerate cubic curves (ones where the first control point equals the origin point), the denominator |A'(0)| is zero,
|
||||||
|
* so to address that, we approach with the square root of t and use the derivative of A(sqrt(t)), which at t = 0 equals A''(0)/2
|
||||||
|
* Therefore, in these cases, we replace one factor of the cross product with A(sqrt(2*t / |A''(0)|)) - P
|
||||||
|
*
|
||||||
|
* The cross product results in a polynomial (in respect to t or t^2 in the degenerate case),
|
||||||
|
* the limit of sign of which at zero can be determined by the lowest order non-zero derivative,
|
||||||
|
* which equals to the sign of the first non-zero polynomial coefficient in the order of increasing exponents.
|
||||||
|
*
|
||||||
|
* The polynomial's constant and linear terms are zero, so the first derivative is definitely zero as well.
|
||||||
|
* The second derivative is assumed to be zero (or near zero) due to the curves being convergent - this is an input requirement
|
||||||
|
* (otherwise the correct result is the sign of the cross product of their directions at t = 0).
|
||||||
|
* Therefore, we skip the first and second derivatives.
|
||||||
|
*/
|
||||||
|
|
||||||
|
namespace msdfgen {
|
||||||
|
|
||||||
|
static void simplifyDegenerateCurve(Point2 *controlPoints, int &order) {
|
||||||
|
if (order == 3 && (controlPoints[1] == controlPoints[0] || controlPoints[1] == controlPoints[3]) && (controlPoints[2] == controlPoints[0] || controlPoints[2] == controlPoints[3])) {
|
||||||
|
controlPoints[1] = controlPoints[3];
|
||||||
|
order = 1;
|
||||||
|
}
|
||||||
|
if (order == 2 && (controlPoints[1] == controlPoints[0] || controlPoints[1] == controlPoints[2])) {
|
||||||
|
controlPoints[1] = controlPoints[2];
|
||||||
|
order = 1;
|
||||||
|
}
|
||||||
|
if (order == 1 && controlPoints[0] == controlPoints[1])
|
||||||
|
order = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
int convergentCurveOrdering(const Point2 *corner, int controlPointsBefore, int controlPointsAfter) {
|
||||||
|
if (!(controlPointsBefore > 0 && controlPointsAfter > 0))
|
||||||
|
return 0;
|
||||||
|
Vector2 a1, a2, a3, b1, b2, b3;
|
||||||
|
a1 = *(corner-1)-*corner;
|
||||||
|
b1 = *(corner+1)-*corner;
|
||||||
|
if (controlPointsBefore >= 2)
|
||||||
|
a2 = *(corner-2)-*(corner-1)-a1;
|
||||||
|
if (controlPointsAfter >= 2)
|
||||||
|
b2 = *(corner+2)-*(corner+1)-b1;
|
||||||
|
if (controlPointsBefore >= 3) {
|
||||||
|
a3 = *(corner-3)-*(corner-2)-(*(corner-2)-*(corner-1))-a2;
|
||||||
|
a2 *= 3;
|
||||||
|
}
|
||||||
|
if (controlPointsAfter >= 3) {
|
||||||
|
b3 = *(corner+3)-*(corner+2)-(*(corner+2)-*(corner+1))-b2;
|
||||||
|
b2 *= 3;
|
||||||
|
}
|
||||||
|
a1 *= controlPointsBefore;
|
||||||
|
b1 *= controlPointsAfter;
|
||||||
|
// Non-degenerate case
|
||||||
|
if (a1 && b1) {
|
||||||
|
double as = a1.length();
|
||||||
|
double bs = b1.length();
|
||||||
|
// Third derivative
|
||||||
|
if (double d = as*crossProduct(a1, b2) + bs*crossProduct(a2, b1))
|
||||||
|
return sign(d);
|
||||||
|
// Fourth derivative
|
||||||
|
if (double d = as*as*crossProduct(a1, b3) + as*bs*crossProduct(a2, b2) + bs*bs*crossProduct(a3, b1))
|
||||||
|
return sign(d);
|
||||||
|
// Fifth derivative
|
||||||
|
if (double d = as*crossProduct(a2, b3) + bs*crossProduct(a3, b2))
|
||||||
|
return sign(d);
|
||||||
|
// Sixth derivative
|
||||||
|
return sign(crossProduct(a3, b3));
|
||||||
|
}
|
||||||
|
// Degenerate curve after corner (control point after corner equals corner)
|
||||||
|
int s = 1;
|
||||||
|
if (a1) { // !b1
|
||||||
|
// Swap aN <-> bN and handle in if (b1)
|
||||||
|
b1 = a1;
|
||||||
|
a1 = b2, b2 = a2, a2 = a1;
|
||||||
|
a1 = b3, b3 = a3, a3 = a1;
|
||||||
|
s = -1; // make sure to also flip output
|
||||||
|
}
|
||||||
|
// Degenerate curve before corner (control point before corner equals corner)
|
||||||
|
if (b1) { // !a1
|
||||||
|
// Two-and-a-half-th derivative
|
||||||
|
if (double d = crossProduct(a3, b1))
|
||||||
|
return s*sign(d);
|
||||||
|
// Third derivative
|
||||||
|
if (double d = crossProduct(a2, b2))
|
||||||
|
return s*sign(d);
|
||||||
|
// Three-and-a-half-th derivative
|
||||||
|
if (double d = crossProduct(a3, b2))
|
||||||
|
return s*sign(d);
|
||||||
|
// Fourth derivative
|
||||||
|
if (double d = crossProduct(a2, b3))
|
||||||
|
return s*sign(d);
|
||||||
|
// Four-and-a-half-th derivative
|
||||||
|
return s*sign(crossProduct(a3, b3));
|
||||||
|
}
|
||||||
|
// Degenerate curves on both sides of the corner (control point before and after corner equals corner)
|
||||||
|
{ // !a1 && !b1
|
||||||
|
// Two-and-a-half-th derivative
|
||||||
|
if (double d = sqrt(a2.length())*crossProduct(a2, b3) + sqrt(b2.length())*crossProduct(a3, b2))
|
||||||
|
return sign(d);
|
||||||
|
// Third derivative
|
||||||
|
return sign(crossProduct(a3, b3));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int convergentCurveOrdering(const EdgeSegment *a, const EdgeSegment *b) {
|
||||||
|
Point2 controlPoints[12];
|
||||||
|
Point2 *corner = controlPoints+4;
|
||||||
|
Point2 *aCpTmp = controlPoints+8;
|
||||||
|
int aOrder = int(a->type());
|
||||||
|
int bOrder = int(b->type());
|
||||||
|
if (!(aOrder >= 1 && aOrder <= 3 && bOrder >= 1 && bOrder <= 3)) {
|
||||||
|
// Not implemented - only linear, quadratic, and cubic curves supported
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
for (int i = 0; i <= aOrder; ++i)
|
||||||
|
aCpTmp[i] = a->controlPoints()[i];
|
||||||
|
for (int i = 0; i <= bOrder; ++i)
|
||||||
|
corner[i] = b->controlPoints()[i];
|
||||||
|
if (aCpTmp[aOrder] != *corner)
|
||||||
|
return 0;
|
||||||
|
simplifyDegenerateCurve(aCpTmp, aOrder);
|
||||||
|
simplifyDegenerateCurve(corner, bOrder);
|
||||||
|
for (int i = 0; i < aOrder; ++i)
|
||||||
|
corner[i-aOrder] = aCpTmp[i];
|
||||||
|
return convergentCurveOrdering(corner, aOrder, bOrder);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
@ -0,0 +1,11 @@
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "edge-segments.h"
|
||||||
|
|
||||||
|
namespace msdfgen {
|
||||||
|
|
||||||
|
/// For curves a, b converging at P = a->point(1) = b->point(0) with the same (opposite) direction, determines the relative ordering in which they exit P (i.e. whether a is to the left or right of b at the smallest positive radius around P)
|
||||||
|
int convergentCurveOrdering(const EdgeSegment *a, const EdgeSegment *b);
|
||||||
|
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue