mirror of https://github.com/golang/go.git
1561 lines
37 KiB
Go
1561 lines
37 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
// This file implements multi-precision floating-point numbers.
|
||
// Like in the GNU MPFR library (http://www.mpfr.org/), operands
|
||
// can be of mixed precision. Unlike MPFR, the rounding mode is
|
||
// not specified with each operation, but with each operand. The
|
||
// rounding mode of the result operand determines the rounding
|
||
// mode of an operation. This is a from-scratch implementation.
|
||
|
||
// CAUTION: WORK IN PROGRESS - USE AT YOUR OWN RISK.
|
||
|
||
// TODO(gri) provide a couple of Example tests showing typical Float initialization
|
||
// and use.
|
||
|
||
package big
|
||
|
||
import (
|
||
"fmt"
|
||
"math"
|
||
)
|
||
|
||
const debugFloat = true // enable for debugging
|
||
|
||
// A nonzero Float represents a multi-precision floating point number
|
||
//
|
||
// sign × mantissa × 2**exponent
|
||
//
|
||
// with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp.
|
||
// A Float may also be +0, -0, +Inf, -Inf, or NaN.
|
||
//
|
||
// Each Float value also has a precision, rounding mode, and accuracy.
|
||
//
|
||
// The precision is the maximum number of mantissa bits available to
|
||
// represent the value. The rounding mode specifies how a result should
|
||
// be rounded to fit into the mantissa bits, and accuracy describes the
|
||
// rounding error with respect to the exact result.
|
||
//
|
||
// All operations, including setters, that specify a *Float variable for
|
||
// the result (usually via the receiver with the exception of MantExp),
|
||
// round the numeric result according to the precision and rounding mode
|
||
// of the result variable, unless specified otherwise.
|
||
//
|
||
// If the provided result precision is 0 (see below), it is set to the
|
||
// precision of the argument with the largest precision value before any
|
||
// rounding takes place, and the rounding mode remains unchanged. Thus,
|
||
// uninitialized Floats provided as result arguments will have their
|
||
// precision set to a reasonable value determined by the operands and
|
||
// their mode is the zero value for RoundingMode (ToNearestEven).
|
||
//
|
||
// By setting the desired precision to 24 or 53 and using matching rounding
|
||
// mode (typically ToNearestEven), Float operations produce the same results
|
||
// as the corresponding float32 or float64 IEEE-754 arithmetic for normalized
|
||
// operands (including +0 and -0). Exponent underflow and overflow lead to a
|
||
// 0 or an Infinity for different values than IEEE-754 because Float exponents
|
||
// hace a much larger range.
|
||
//
|
||
// The zero (uninitialized) value for a Float is ready to use and represents
|
||
// the number +0.0 exactly, with precision 0 and rounding mode ToNearestEven.
|
||
//
|
||
type Float struct {
|
||
mode RoundingMode
|
||
acc Accuracy
|
||
neg bool
|
||
mant nat
|
||
exp int32
|
||
prec uint32
|
||
}
|
||
|
||
// Internal representation: The mantissa bits x.mant of a Float x are stored
|
||
// in a nat slice long enough to hold up to x.prec bits; the slice may (but
|
||
// doesn't have to) be shorter if the mantissa contains trailing 0 bits.
|
||
// Unless x is a zero, infinity, or NaN, x.mant is normalized such that the
|
||
// msb of x.mant == 1 (i.e., the msb is shifted all the way "to the left").
|
||
// Thus, if the mantissa has trailing 0 bits or x.prec is not a multiple
|
||
// of the the Word size _W, x.mant[0] has trailing zero bits. Zero, Inf, and
|
||
// NaN values have an empty mantissa and a 0, infExp, or NanExp exponent,
|
||
// respectively.
|
||
|
||
const (
|
||
MaxExp = math.MaxInt32 // largest supported exponent
|
||
MinExp = math.MinInt32 + 2 // smallest supported exponent
|
||
infExp = math.MinInt32 + 1 // exponent for Inf values
|
||
nanExp = math.MinInt32 + 0 // exponent for NaN values
|
||
MaxPrec = math.MaxUint32 // largest (theoretically) supported precision; likely memory-limited
|
||
)
|
||
|
||
// Accuracy describes the rounding error produced by the most recent
|
||
// operation that generated a Float value, relative to the exact value:
|
||
//
|
||
// -1: below exact value
|
||
// 0: exact value
|
||
// +1: above exact value
|
||
//
|
||
type Accuracy int8
|
||
|
||
// Constants describing the Accuracy of a Float.
|
||
const (
|
||
Below Accuracy = -1
|
||
Exact Accuracy = 0
|
||
Above Accuracy = +1
|
||
)
|
||
|
||
func (a Accuracy) String() string {
|
||
switch {
|
||
case a < 0:
|
||
return "below"
|
||
default:
|
||
return "exact"
|
||
case a > 0:
|
||
return "above"
|
||
}
|
||
}
|
||
|
||
// RoundingMode determines how a Float value is rounded to the
|
||
// desired precision. Rounding may change the Float value; the
|
||
// rounding error is described by the Float's Accuracy.
|
||
type RoundingMode uint8
|
||
|
||
// The following rounding modes are supported.
|
||
const (
|
||
ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven
|
||
ToNearestAway // == IEEE 754-2008 roundTiesToAway
|
||
ToZero // == IEEE 754-2008 roundTowardZero
|
||
AwayFromZero // no IEEE 754-2008 equivalent
|
||
ToNegativeInf // == IEEE 754-2008 roundTowardNegative
|
||
ToPositiveInf // == IEEE 754-2008 roundTowardPositive
|
||
)
|
||
|
||
func (mode RoundingMode) String() string {
|
||
switch mode {
|
||
case ToNearestEven:
|
||
return "ToNearestEven"
|
||
case ToNearestAway:
|
||
return "ToNearestAway"
|
||
case ToZero:
|
||
return "ToZero"
|
||
case AwayFromZero:
|
||
return "AwayFromZero"
|
||
case ToNegativeInf:
|
||
return "ToNegativeInf"
|
||
case ToPositiveInf:
|
||
return "ToPositiveInf"
|
||
}
|
||
panic("unreachable")
|
||
}
|
||
|
||
// SetPrec sets z's precision to prec and returns the (possibly) rounded
|
||
// value of z. Rounding occurs according to z's rounding mode if the mantissa
|
||
// cannot be represented in prec bits without loss of precision.
|
||
// SetPrec(0) maps all finite values to ±0; infinite and NaN values remain
|
||
// unchanged. If prec > MaxPrec, it is set to MaxPrec.
|
||
func (z *Float) SetPrec(prec uint) *Float {
|
||
z.acc = Exact // optimistically assume no rounding is needed
|
||
|
||
// special case
|
||
if prec == 0 {
|
||
z.prec = 0
|
||
if len(z.mant) != 0 {
|
||
// truncate and compute accuracy
|
||
z.setZero()
|
||
acc := Below
|
||
if z.neg {
|
||
acc = Above
|
||
}
|
||
z.acc = acc
|
||
}
|
||
return z
|
||
}
|
||
|
||
// general case
|
||
if prec > MaxPrec {
|
||
prec = MaxPrec
|
||
}
|
||
old := z.prec
|
||
z.prec = uint32(prec)
|
||
if z.prec < old {
|
||
z.round(0)
|
||
}
|
||
return z
|
||
}
|
||
|
||
// SetMode sets z's rounding mode to mode and returns an exact z.
|
||
// z remains unchanged otherwise.
|
||
func (z *Float) SetMode(mode RoundingMode) *Float {
|
||
z.acc = Exact // TODO(gri) should we not do this? what's the general rule for setting accuracy?
|
||
z.mode = mode
|
||
return z
|
||
}
|
||
|
||
// Prec returns the mantissa precision of x in bits.
|
||
// The result may be 0 for |x| == 0, |x| == Inf, or NaN.
|
||
func (x *Float) Prec() uint {
|
||
return uint(x.prec)
|
||
}
|
||
|
||
// MinPrec returns the minimum precision required to represent x exactly
|
||
// (i.e., the smallest prec before x.SetPrec(prec) would start rounding x).
|
||
// The result is 0 for ±0, ±Inf, and NaN.
|
||
func (x *Float) MinPrec() uint {
|
||
return uint(len(x.mant))*_W - x.mant.trailingZeroBits()
|
||
}
|
||
|
||
// Acc returns the accuracy of x produced by the most recent operation.
|
||
func (x *Float) Acc() Accuracy {
|
||
return x.acc
|
||
}
|
||
|
||
// Mode returns the rounding mode of x.
|
||
func (x *Float) Mode() RoundingMode {
|
||
return x.mode
|
||
}
|
||
|
||
// Sign returns:
|
||
//
|
||
// -1 if x < 0
|
||
// 0 if x is ±0 or NaN
|
||
// +1 if x > 0
|
||
//
|
||
func (x *Float) Sign() int {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
if len(x.mant) == 0 && x.exp != infExp {
|
||
return 0
|
||
}
|
||
if x.neg {
|
||
return -1
|
||
}
|
||
return 1
|
||
}
|
||
|
||
// MantExp breaks x into its mantissa and exponent components
|
||
// and returns the exponent. If a non-nil mant argument is
|
||
// provided its value is set to the mantissa of x, with the
|
||
// same precision and rounding mode as x. The components
|
||
// satisfy x == mant × 2**exp, with 0.5 <= |mant| < 1.0.
|
||
// Calling MantExp with a nil argument is an efficient way to
|
||
// get the exponent of the receiver.
|
||
//
|
||
// Special cases are:
|
||
//
|
||
// ( ±0).MantExp(mant) = 0, with mant set to ±0
|
||
// (±Inf).MantExp(mant) = 0, with mant set to ±Inf
|
||
// ( NaN).MantExp(mant) = 0, with mant set to NaN
|
||
//
|
||
// x and mant may be the same in which case x is set to its
|
||
// mantissa value.
|
||
func (x *Float) MantExp(mant *Float) (exp int) {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
if len(x.mant) != 0 {
|
||
exp = int(x.exp)
|
||
}
|
||
if mant != nil {
|
||
mant.Copy(x)
|
||
if x.exp >= MinExp {
|
||
mant.exp = 0
|
||
}
|
||
}
|
||
return
|
||
}
|
||
|
||
// SetMantExp sets z to mant × 2**exp and and returns z.
|
||
// The result z has the same precision and rounding mode
|
||
// as mant. SetMantExp is an inverse of MantExp but does
|
||
// not require 0.5 <= |mant| < 1.0. Specifically:
|
||
//
|
||
// mant := new(Float)
|
||
// new(Float).SetMantExp(mant, x.SetMantExp(mant)).Cmp(x) == 0
|
||
//
|
||
// Special cases are:
|
||
//
|
||
// z.SetMantExp( ±0, exp) = ±0
|
||
// z.SetMantExp(±Inf, exp) = ±Inf
|
||
// z.SetMantExp( NaN, exp) = NaN
|
||
//
|
||
func (z *Float) SetMantExp(mant *Float, exp int) *Float {
|
||
if debugFloat {
|
||
validate(z)
|
||
validate(mant)
|
||
}
|
||
z.Copy(mant)
|
||
if len(z.mant) == 0 {
|
||
return z
|
||
}
|
||
z.setExp(int64(z.exp) + int64(exp))
|
||
return z
|
||
}
|
||
|
||
// IsInt reports whether x is an integer.
|
||
// ±Inf and NaN are not considered integers.
|
||
func (x *Float) IsInt() bool {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
// pick off easy cases
|
||
if x.exp <= 0 {
|
||
// |x| < 1 || |x| == Inf || x is NaN
|
||
return len(x.mant) == 0 && x.exp == 0 // x == 0
|
||
}
|
||
// x.exp > 0
|
||
return x.prec <= uint32(x.exp) || x.MinPrec() <= uint(x.exp) // not enough bits for fractional mantissa
|
||
}
|
||
|
||
// IsInf reports whether x is an infinity, according to sign.
|
||
// If sign > 0, IsInf reports whether x is positive infinity.
|
||
// If sign < 0, IsInf reports whether x is negative infinity.
|
||
// If sign == 0, IsInf reports whether x is either infinity.
|
||
func (x *Float) IsInf(sign int) bool {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
return x.exp == infExp && (sign == 0 || x.neg == (sign < 0))
|
||
}
|
||
|
||
// IsNaN reports whether x is a NaN.
|
||
func (x *Float) IsNaN() bool {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
return x.exp == nanExp
|
||
}
|
||
|
||
func (z *Float) setZero() {
|
||
z.mant = z.mant[:0]
|
||
z.exp = 0
|
||
}
|
||
|
||
func (z *Float) setInf() {
|
||
z.mant = z.mant[:0]
|
||
z.exp = infExp
|
||
}
|
||
|
||
// setExp sets the exponent for z.
|
||
// If e < MinExp, z becomes ±0; if e > MaxExp, z becomes ±Inf.
|
||
func (z *Float) setExp(e int64) {
|
||
switch {
|
||
case e < MinExp:
|
||
z.setZero()
|
||
default:
|
||
if len(z.mant) == 0 {
|
||
e = 0
|
||
}
|
||
z.exp = int32(e)
|
||
case e > MaxExp:
|
||
z.setInf()
|
||
}
|
||
}
|
||
|
||
// debugging support
|
||
func validate(x *Float) {
|
||
if !debugFloat {
|
||
// avoid performance bugs
|
||
panic("validate called but debugFloat is not set")
|
||
}
|
||
const msb = 1 << (_W - 1)
|
||
m := len(x.mant)
|
||
if m == 0 {
|
||
// 0.0, Inf, or NaN
|
||
if x.exp != 0 && x.exp >= MinExp {
|
||
panic(fmt.Sprintf("empty matissa with invalid exponent %d", x.exp))
|
||
}
|
||
return
|
||
}
|
||
if x.mant[m-1]&msb == 0 {
|
||
panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Format('p', 0)))
|
||
}
|
||
if x.prec <= 0 {
|
||
panic(fmt.Sprintf("invalid precision %d", x.prec))
|
||
}
|
||
}
|
||
|
||
// round rounds z according to z.mode to z.prec bits and sets z.acc accordingly.
|
||
// sbit must be 0 or 1 and summarizes any "sticky bit" information one might
|
||
// have before calling round. z's mantissa must be normalized (with the msb set)
|
||
// or empty.
|
||
//
|
||
// CAUTION: The rounding modes ToNegativeInf, ToPositiveInf are affected by the
|
||
// sign of z. For correct rounding, the sign of z must be set correctly before
|
||
// calling round.
|
||
func (z *Float) round(sbit uint) {
|
||
if debugFloat {
|
||
validate(z)
|
||
}
|
||
|
||
z.acc = Exact
|
||
|
||
// handle zero, Inf, and NaN
|
||
m := uint32(len(z.mant)) // present mantissa length in words
|
||
if m == 0 {
|
||
return
|
||
}
|
||
// m > 0 implies z.prec > 0 (checked by validate)
|
||
|
||
bits := m * _W // present mantissa bits
|
||
if bits <= z.prec {
|
||
// mantissa fits => nothing to do
|
||
return
|
||
}
|
||
// bits > z.prec
|
||
|
||
n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision
|
||
|
||
// Rounding is based on two bits: the rounding bit (rbit) and the
|
||
// sticky bit (sbit). The rbit is the bit immediately before the
|
||
// z.prec leading mantissa bits (the "0.5"). The sbit is set if any
|
||
// of the bits before the rbit are set (the "0.25", "0.125", etc.):
|
||
//
|
||
// rbit sbit => "fractional part"
|
||
//
|
||
// 0 0 == 0
|
||
// 0 1 > 0 , < 0.5
|
||
// 1 0 == 0.5
|
||
// 1 1 > 0.5, < 1.0
|
||
|
||
// bits > z.prec: mantissa too large => round
|
||
r := uint(bits - z.prec - 1) // rounding bit position; r >= 0
|
||
rbit := z.mant.bit(r) // rounding bit
|
||
if sbit == 0 {
|
||
sbit = z.mant.sticky(r)
|
||
}
|
||
if debugFloat && sbit&^1 != 0 {
|
||
panic(fmt.Sprintf("invalid sbit %#x", sbit))
|
||
}
|
||
|
||
// convert ToXInf rounding modes
|
||
mode := z.mode
|
||
switch mode {
|
||
case ToNegativeInf:
|
||
mode = ToZero
|
||
if z.neg {
|
||
mode = AwayFromZero
|
||
}
|
||
case ToPositiveInf:
|
||
mode = AwayFromZero
|
||
if z.neg {
|
||
mode = ToZero
|
||
}
|
||
}
|
||
|
||
// cut off extra words
|
||
if m > n {
|
||
copy(z.mant, z.mant[m-n:]) // move n last words to front
|
||
z.mant = z.mant[:n]
|
||
}
|
||
|
||
// determine number of trailing zero bits t
|
||
t := n*_W - z.prec // 0 <= t < _W
|
||
lsb := Word(1) << t
|
||
|
||
// make rounding decision
|
||
// TODO(gri) This can be simplified (see roundBits in float_test.go).
|
||
switch mode {
|
||
case ToZero:
|
||
// nothing to do
|
||
case ToNearestEven, ToNearestAway:
|
||
if rbit == 0 {
|
||
// rounding bits == 0b0x
|
||
mode = ToZero
|
||
} else if sbit == 1 {
|
||
// rounding bits == 0b11
|
||
mode = AwayFromZero
|
||
}
|
||
case AwayFromZero:
|
||
if rbit|sbit == 0 {
|
||
mode = ToZero
|
||
}
|
||
default:
|
||
// ToXInf modes have been converted to ToZero or AwayFromZero
|
||
panic("unreachable")
|
||
}
|
||
|
||
// round and determine accuracy
|
||
switch mode {
|
||
case ToZero:
|
||
if rbit|sbit != 0 {
|
||
z.acc = Below
|
||
}
|
||
|
||
case ToNearestEven, ToNearestAway:
|
||
if debugFloat && rbit != 1 {
|
||
panic("internal error in rounding")
|
||
}
|
||
if mode == ToNearestEven && sbit == 0 && z.mant[0]&lsb == 0 {
|
||
z.acc = Below
|
||
break
|
||
}
|
||
// mode == ToNearestAway || sbit == 1 || z.mant[0]&lsb != 0
|
||
fallthrough
|
||
|
||
case AwayFromZero:
|
||
// add 1 to mantissa
|
||
if addVW(z.mant, z.mant, lsb) != 0 {
|
||
// overflow => shift mantissa right by 1 and add msb
|
||
shrVU(z.mant, z.mant, 1)
|
||
z.mant[n-1] |= 1 << (_W - 1)
|
||
// adjust exponent
|
||
z.exp++
|
||
}
|
||
z.acc = Above
|
||
}
|
||
|
||
// zero out trailing bits in least-significant word
|
||
z.mant[0] &^= lsb - 1
|
||
|
||
// update accuracy
|
||
if z.neg {
|
||
z.acc = -z.acc
|
||
}
|
||
|
||
if debugFloat {
|
||
validate(z)
|
||
}
|
||
|
||
return
|
||
}
|
||
|
||
// nlz returns the number of leading zero bits in x.
|
||
func nlz(x Word) uint {
|
||
return _W - uint(bitLen(x))
|
||
}
|
||
|
||
func nlz64(x uint64) uint {
|
||
// TODO(gri) this can be done more nicely
|
||
if _W == 32 {
|
||
if x>>32 == 0 {
|
||
return 32 + nlz(Word(x))
|
||
}
|
||
return nlz(Word(x >> 32))
|
||
}
|
||
if _W == 64 {
|
||
return nlz(Word(x))
|
||
}
|
||
panic("unreachable")
|
||
}
|
||
|
||
func (z *Float) setBits64(neg bool, x uint64) *Float {
|
||
if z.prec == 0 {
|
||
z.prec = 64
|
||
}
|
||
z.acc = Exact
|
||
z.neg = neg
|
||
if x == 0 {
|
||
z.setZero()
|
||
return z
|
||
}
|
||
// x != 0
|
||
s := nlz64(x)
|
||
z.mant = z.mant.setUint64(x << s)
|
||
z.exp = int32(64 - s) // always fits
|
||
if z.prec < 64 {
|
||
z.round(0)
|
||
}
|
||
return z
|
||
}
|
||
|
||
// SetUint64 sets z to the (possibly rounded) value of x and returns z.
|
||
// If z's precision is 0, it is changed to 64 (and rounding will have
|
||
// no effect).
|
||
func (z *Float) SetUint64(x uint64) *Float {
|
||
return z.setBits64(false, x)
|
||
}
|
||
|
||
// SetInt64 sets z to the (possibly rounded) value of x and returns z.
|
||
// If z's precision is 0, it is changed to 64 (and rounding will have
|
||
// no effect).
|
||
func (z *Float) SetInt64(x int64) *Float {
|
||
u := x
|
||
if u < 0 {
|
||
u = -u
|
||
}
|
||
// We cannot simply call z.SetUint64(uint64(u)) and change
|
||
// the sign afterwards because the sign affects rounding.
|
||
return z.setBits64(x < 0, uint64(u))
|
||
}
|
||
|
||
// SetFloat64 sets z to the (possibly rounded) value of x and returns z.
|
||
// If z's precision is 0, it is changed to 53 (and rounding will have
|
||
// no effect).
|
||
func (z *Float) SetFloat64(x float64) *Float {
|
||
if z.prec == 0 {
|
||
z.prec = 53
|
||
}
|
||
if math.IsNaN(x) {
|
||
z.SetNaN()
|
||
return z
|
||
}
|
||
z.acc = Exact
|
||
z.neg = math.Signbit(x) // handle -0, -Inf correctly
|
||
if math.IsInf(x, 0) {
|
||
z.setInf()
|
||
return z
|
||
}
|
||
if x == 0 {
|
||
z.setZero()
|
||
return z
|
||
}
|
||
// normalized x != 0
|
||
fmant, exp := math.Frexp(x) // get normalized mantissa
|
||
z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
|
||
z.exp = int32(exp) // always fits
|
||
if z.prec < 53 {
|
||
z.round(0)
|
||
}
|
||
return z
|
||
}
|
||
|
||
// fnorm normalizes mantissa m by shifting it to the left
|
||
// such that the msb of the most-significant word (msw) is 1.
|
||
// It returns the shift amount. It assumes that len(m) != 0.
|
||
func fnorm(m nat) int64 {
|
||
if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) {
|
||
panic("msw of mantissa is 0")
|
||
}
|
||
s := nlz(m[len(m)-1])
|
||
if s > 0 {
|
||
c := shlVU(m, m, s)
|
||
if debugFloat && c != 0 {
|
||
panic("nlz or shlVU incorrect")
|
||
}
|
||
}
|
||
return int64(s)
|
||
}
|
||
|
||
// SetInt sets z to the (possibly rounded) value of x and returns z.
|
||
// If z's precision is 0, it is changed to the larger of x.BitLen()
|
||
// or 64 (and rounding will have no effect).
|
||
func (z *Float) SetInt(x *Int) *Float {
|
||
// TODO(gri) can be more efficient if z.prec > 0
|
||
// but small compared to the size of x, or if there
|
||
// are many trailing 0's.
|
||
bits := uint32(x.BitLen())
|
||
if z.prec == 0 {
|
||
z.prec = umax32(bits, 64)
|
||
}
|
||
z.acc = Exact
|
||
z.neg = x.neg
|
||
if len(x.abs) == 0 {
|
||
z.mant = z.mant[:0]
|
||
z.exp = 0
|
||
return z
|
||
}
|
||
// x != 0
|
||
z.mant = z.mant.set(x.abs)
|
||
fnorm(z.mant)
|
||
z.setExp(int64(bits))
|
||
if z.prec < bits {
|
||
z.round(0)
|
||
}
|
||
return z
|
||
}
|
||
|
||
// SetRat sets z to the (possibly rounded) value of x and returns z.
|
||
// If z's precision is 0, it is changed to the largest of a.BitLen(),
|
||
// b.BitLen(), or 64; with x = a/b.
|
||
func (z *Float) SetRat(x *Rat) *Float {
|
||
if x.IsInt() {
|
||
return z.SetInt(x.Num())
|
||
}
|
||
var a, b Float
|
||
a.SetInt(x.Num())
|
||
b.SetInt(x.Denom())
|
||
if z.prec == 0 {
|
||
z.prec = umax32(a.prec, b.prec)
|
||
}
|
||
return z.Quo(&a, &b)
|
||
}
|
||
|
||
// SetInf sets z to the infinite Float +Inf for sign >= 0,
|
||
// or -Inf for sign < 0, and returns z. The precision of
|
||
// z is unchanged and the result is always Exact.
|
||
func (z *Float) SetInf(sign int) *Float {
|
||
z.acc = Exact
|
||
z.neg = sign < 0
|
||
z.setInf()
|
||
return z
|
||
}
|
||
|
||
// SetNaN sets z to a NaN value, and returns z.
|
||
// The precision of z is unchanged and the result is always Exact.
|
||
func (z *Float) SetNaN() *Float {
|
||
z.acc = Exact
|
||
z.neg = false
|
||
z.mant = z.mant[:0]
|
||
z.exp = nanExp
|
||
return z
|
||
}
|
||
|
||
// Set sets z to the (possibly rounded) value of x and returns z.
|
||
// If z's precision is 0, it is changed to the precision of x
|
||
// before setting z (and rounding will have no effect).
|
||
// Rounding is performed according to z's precision and rounding
|
||
// mode; and z's accuracy reports the result error relative to the
|
||
// exact (not rounded) result.
|
||
func (z *Float) Set(x *Float) *Float {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
z.acc = Exact
|
||
if z != x {
|
||
if z.prec == 0 {
|
||
z.prec = x.prec
|
||
}
|
||
z.neg = x.neg
|
||
z.exp = x.exp
|
||
z.mant = z.mant.set(x.mant)
|
||
if z.prec < x.prec {
|
||
z.round(0)
|
||
}
|
||
}
|
||
return z
|
||
}
|
||
|
||
// Copy sets z to x, with the same precision and rounding mode as x,
|
||
// and returns z.
|
||
func (z *Float) Copy(x *Float) *Float {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
// TODO(gri) what about z.acc? should it be always Exact?
|
||
if z != x {
|
||
z.acc = Exact
|
||
z.neg = x.neg
|
||
z.exp = x.exp
|
||
z.mant = z.mant.set(x.mant)
|
||
z.prec = x.prec
|
||
z.mode = x.mode
|
||
}
|
||
return z
|
||
}
|
||
|
||
func high64(x nat) uint64 {
|
||
i := len(x)
|
||
if i == 0 {
|
||
return 0
|
||
}
|
||
// i > 0
|
||
v := uint64(x[i-1])
|
||
if _W == 32 {
|
||
v <<= 32
|
||
if i > 1 {
|
||
v |= uint64(x[i-2])
|
||
}
|
||
}
|
||
return v
|
||
}
|
||
|
||
// Uint64 returns the unsigned integer resulting from truncating x
|
||
// towards zero. If 0 <= x <= math.MaxUint64, the result is Exact
|
||
// if x is an integer and Below otherwise.
|
||
// The result is (0, Above) for x < 0, and (math.MaxUint64, Below)
|
||
// for x > math.MaxUint64.
|
||
// BUG(gri) not implemented for NaN
|
||
func (x *Float) Uint64() (uint64, Accuracy) {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
|
||
// special cases
|
||
if len(x.mant) == 0 {
|
||
switch x.exp {
|
||
case 0:
|
||
return 0, Exact // ±0
|
||
case infExp:
|
||
if x.neg {
|
||
return 0, Above // -Inf
|
||
}
|
||
return math.MaxUint64, Below // +Inf
|
||
case nanExp:
|
||
panic("unimplemented")
|
||
}
|
||
panic("unreachable")
|
||
}
|
||
|
||
if x.neg {
|
||
return 0, Above
|
||
}
|
||
// x > 0
|
||
if x.exp <= 0 {
|
||
// 0 < x < 1
|
||
return 0, Below
|
||
}
|
||
// 1 <= x
|
||
if x.exp <= 64 {
|
||
// u = trunc(x) fits into a uint64
|
||
u := high64(x.mant) >> (64 - uint32(x.exp))
|
||
if x.MinPrec() <= 64 {
|
||
return u, Exact
|
||
}
|
||
return u, Below // x truncated
|
||
}
|
||
// x too large
|
||
return math.MaxUint64, Below
|
||
}
|
||
|
||
// Int64 returns the integer resulting from truncating x towards zero.
|
||
// If math.MinInt64 <= x <= math.MaxInt64, the result is Exact if x is
|
||
// an integer, and Above (x < 0) or Below (x > 0) otherwise.
|
||
// The result is (math.MinInt64, Above) for x < math.MinInt64, and
|
||
// (math.MaxInt64, Below) for x > math.MaxInt64.
|
||
// BUG(gri) incorrect result for NaN
|
||
func (x *Float) Int64() (int64, Accuracy) {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
|
||
// special cases
|
||
if len(x.mant) == 0 {
|
||
switch x.exp {
|
||
case 0:
|
||
return 0, Exact // ±0
|
||
case infExp:
|
||
if x.neg {
|
||
return math.MinInt64, Above // -Inf
|
||
}
|
||
return math.MaxInt64, Below // +Inf
|
||
case nanExp:
|
||
// TODO(gri) fix this
|
||
return 0, Exact
|
||
}
|
||
panic("unreachable")
|
||
}
|
||
|
||
// 0 < |x| < +Inf
|
||
acc := Below
|
||
if x.neg {
|
||
acc = Above
|
||
}
|
||
if x.exp <= 0 {
|
||
// 0 < |x| < 1
|
||
return 0, acc
|
||
}
|
||
// x.exp > 0
|
||
|
||
// 1 <= |x| < +Inf
|
||
if x.exp <= 63 {
|
||
// i = trunc(x) fits into an int64 (excluding math.MinInt64)
|
||
i := int64(high64(x.mant) >> (64 - uint32(x.exp)))
|
||
if x.neg {
|
||
i = -i
|
||
}
|
||
if x.MinPrec() <= 63 {
|
||
return i, Exact
|
||
}
|
||
return i, acc // x truncated
|
||
}
|
||
if x.neg {
|
||
// check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64))
|
||
if x.exp == 64 && x.MinPrec() == 1 {
|
||
acc = Exact
|
||
}
|
||
return math.MinInt64, acc
|
||
}
|
||
// x == +Inf
|
||
return math.MaxInt64, Below
|
||
}
|
||
|
||
// Float64 returns the closest float64 value of x
|
||
// by rounding to nearest with 53 bits precision.
|
||
// BUG(gri) accuracy incorrect for NaN, doesn't handle exponent overflow
|
||
func (x *Float) Float64() (float64, Accuracy) {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
|
||
// special cases
|
||
if len(x.mant) == 0 {
|
||
switch x.exp {
|
||
case 0:
|
||
if x.neg {
|
||
var zero float64
|
||
return -zero, Exact
|
||
}
|
||
return 0, Exact
|
||
case infExp:
|
||
var sign int
|
||
if x.neg {
|
||
sign = -1
|
||
}
|
||
return math.Inf(sign), Exact
|
||
case nanExp:
|
||
return math.NaN(), Exact
|
||
}
|
||
panic("unreachable")
|
||
}
|
||
|
||
// 0 < |x| < +Inf
|
||
var r Float
|
||
r.prec = 53
|
||
r.Set(x)
|
||
var s uint64
|
||
if r.neg {
|
||
s = 1 << 63
|
||
}
|
||
e := uint64(1022+r.exp) & 0x7ff // TODO(gri) check for overflow
|
||
m := high64(r.mant) >> 11 & (1<<52 - 1)
|
||
return math.Float64frombits(s | e<<52 | m), r.acc
|
||
}
|
||
|
||
// Int returns the result of truncating x towards zero;
|
||
// or nil if x is an infinity or NaN.
|
||
// The result is Exact if x.IsInt(); otherwise it is Below
|
||
// for x > 0, and Above for x < 0.
|
||
// If a non-nil *Int argument z is provided, Int stores
|
||
// the result in z instead of allocating a new Int.
|
||
// BUG(gri) accuracy incorrect for for NaN
|
||
func (x *Float) Int(z *Int) (*Int, Accuracy) {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
|
||
if z == nil {
|
||
// no need to do this for Inf and NaN
|
||
// but those are rare enough that we
|
||
// don't care
|
||
z = new(Int)
|
||
}
|
||
|
||
// special cases
|
||
if len(x.mant) == 0 {
|
||
switch x.exp {
|
||
case 0:
|
||
return z.SetInt64(0), Exact // 0
|
||
case infExp:
|
||
if x.neg {
|
||
return nil, Above
|
||
}
|
||
return nil, Below
|
||
case nanExp:
|
||
// TODO(gri) fix accuracy for NaN
|
||
return nil, Exact
|
||
}
|
||
panic("unreachable")
|
||
}
|
||
|
||
// 0 < |x| < +Inf
|
||
acc := Below
|
||
if x.neg {
|
||
acc = Above
|
||
}
|
||
if x.exp <= 0 {
|
||
// 0 < |x| < 1
|
||
return z.SetInt64(0), acc
|
||
}
|
||
// x.exp > 0
|
||
|
||
// 1 <= |x| < +Inf
|
||
// determine minimum required precision for x
|
||
allBits := uint(len(x.mant)) * _W
|
||
exp := uint(x.exp)
|
||
if x.MinPrec() <= exp {
|
||
acc = Exact
|
||
}
|
||
// shift mantissa as needed
|
||
if z == nil {
|
||
z = new(Int)
|
||
}
|
||
z.neg = x.neg
|
||
// TODO(gri) should have a shift that takes positive and negative shift counts
|
||
switch {
|
||
case exp > allBits:
|
||
z.abs = z.abs.shl(x.mant, exp-allBits)
|
||
default:
|
||
z.abs = z.abs.set(x.mant)
|
||
case exp < allBits:
|
||
z.abs = z.abs.shr(x.mant, allBits-exp)
|
||
}
|
||
return z, acc
|
||
}
|
||
|
||
// Rat returns the rational number corresponding to x;
|
||
// or nil if x is an infinity or NaN.
|
||
// The result is Exact is x is not an Inf or NaN.
|
||
// If a non-nil *Rat argument z is provided, Rat stores
|
||
// the result in z instead of allocating a new Rat.
|
||
// BUG(gri) incorrect accuracy for Inf, NaN.
|
||
func (x *Float) Rat(z *Rat) (*Rat, Accuracy) {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
|
||
if z == nil {
|
||
// no need to do this for Inf and NaN
|
||
// but those are rare enough that we
|
||
// don't care
|
||
z = new(Rat)
|
||
}
|
||
|
||
// special cases
|
||
if len(x.mant) == 0 {
|
||
switch x.exp {
|
||
case 0:
|
||
return z.SetInt64(0), Exact // 0
|
||
case infExp:
|
||
if x.neg {
|
||
return nil, Above
|
||
}
|
||
return nil, Below
|
||
case nanExp:
|
||
// TODO(gri) fix accuracy
|
||
return nil, Exact
|
||
}
|
||
panic("unreachable")
|
||
}
|
||
|
||
// 0 <= |x| < Inf
|
||
allBits := int32(len(x.mant)) * _W
|
||
// build up numerator and denominator
|
||
z.a.neg = x.neg
|
||
switch {
|
||
case x.exp > allBits:
|
||
z.a.abs = z.a.abs.shl(x.mant, uint(x.exp-allBits))
|
||
z.b.abs = z.b.abs[:0] // == 1 (see Rat)
|
||
// z already in normal form
|
||
default:
|
||
z.a.abs = z.a.abs.set(x.mant)
|
||
z.b.abs = z.b.abs[:0] // == 1 (see Rat)
|
||
// z already in normal form
|
||
case x.exp < allBits:
|
||
z.a.abs = z.a.abs.set(x.mant)
|
||
t := z.b.abs.setUint64(1)
|
||
z.b.abs = t.shl(t, uint(allBits-x.exp))
|
||
z.norm()
|
||
}
|
||
return z, Exact
|
||
}
|
||
|
||
// Abs sets z to the (possibly rounded) value |x| (the absolute value of x)
|
||
// and returns z.
|
||
func (z *Float) Abs(x *Float) *Float {
|
||
z.Set(x)
|
||
z.neg = false
|
||
return z
|
||
}
|
||
|
||
// Neg sets z to the (possibly rounded) value of x with its sign negated,
|
||
// and returns z.
|
||
func (z *Float) Neg(x *Float) *Float {
|
||
z.Set(x)
|
||
z.neg = !z.neg
|
||
return z
|
||
}
|
||
|
||
// z = x + y, ignoring signs of x and y.
|
||
// x and y must not be 0, Inf, or NaN.
|
||
func (z *Float) uadd(x, y *Float) {
|
||
// Note: This implementation requires 2 shifts most of the
|
||
// time. It is also inefficient if exponents or precisions
|
||
// differ by wide margins. The following article describes
|
||
// an efficient (but much more complicated) implementation
|
||
// compatible with the internal representation used here:
|
||
//
|
||
// Vincent Lefèvre: "The Generic Multiple-Precision Floating-
|
||
// Point Addition With Exact Rounding (as in the MPFR Library)"
|
||
// http://www.vinc17.net/research/papers/rnc6.pdf
|
||
|
||
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
|
||
panic("uadd called with 0 argument")
|
||
}
|
||
|
||
// compute exponents ex, ey for mantissa with "binary point"
|
||
// on the right (mantissa.0) - use int64 to avoid overflow
|
||
ex := int64(x.exp) - int64(len(x.mant))*_W
|
||
ey := int64(y.exp) - int64(len(y.mant))*_W
|
||
|
||
// TODO(gri) having a combined add-and-shift primitive
|
||
// could make this code significantly faster
|
||
switch {
|
||
case ex < ey:
|
||
// cannot re-use z.mant w/o testing for aliasing
|
||
t := nat(nil).shl(y.mant, uint(ey-ex))
|
||
z.mant = z.mant.add(x.mant, t)
|
||
default:
|
||
// ex == ey, no shift needed
|
||
z.mant = z.mant.add(x.mant, y.mant)
|
||
case ex > ey:
|
||
// cannot re-use z.mant w/o testing for aliasing
|
||
t := nat(nil).shl(x.mant, uint(ex-ey))
|
||
z.mant = z.mant.add(t, y.mant)
|
||
ex = ey
|
||
}
|
||
// len(z.mant) > 0
|
||
|
||
z.setExp(ex + int64(len(z.mant))*_W - fnorm(z.mant))
|
||
z.round(0)
|
||
}
|
||
|
||
// z = x - y for x >= y, ignoring signs of x and y.
|
||
// x and y must not be 0, Inf, or NaN.
|
||
func (z *Float) usub(x, y *Float) {
|
||
// This code is symmetric to uadd.
|
||
// We have not factored the common code out because
|
||
// eventually uadd (and usub) should be optimized
|
||
// by special-casing, and the code will diverge.
|
||
|
||
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
|
||
panic("usub called with 0 argument")
|
||
}
|
||
|
||
ex := int64(x.exp) - int64(len(x.mant))*_W
|
||
ey := int64(y.exp) - int64(len(y.mant))*_W
|
||
|
||
switch {
|
||
case ex < ey:
|
||
// cannot re-use z.mant w/o testing for aliasing
|
||
t := nat(nil).shl(y.mant, uint(ey-ex))
|
||
z.mant = t.sub(x.mant, t)
|
||
default:
|
||
// ex == ey, no shift needed
|
||
z.mant = z.mant.sub(x.mant, y.mant)
|
||
case ex > ey:
|
||
// cannot re-use z.mant w/o testing for aliasing
|
||
t := nat(nil).shl(x.mant, uint(ex-ey))
|
||
z.mant = t.sub(t, y.mant)
|
||
ex = ey
|
||
}
|
||
|
||
// operands may have cancelled each other out
|
||
if len(z.mant) == 0 {
|
||
z.acc = Exact
|
||
z.setZero()
|
||
return
|
||
}
|
||
// len(z.mant) > 0
|
||
|
||
z.setExp(ex + int64(len(z.mant))*_W - fnorm(z.mant))
|
||
z.round(0)
|
||
}
|
||
|
||
// z = x * y, ignoring signs of x and y.
|
||
// x and y must not be 0, Inf, or NaN.
|
||
func (z *Float) umul(x, y *Float) {
|
||
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
|
||
panic("umul called with 0 argument")
|
||
}
|
||
|
||
// Note: This is doing too much work if the precision
|
||
// of z is less than the sum of the precisions of x
|
||
// and y which is often the case (e.g., if all floats
|
||
// have the same precision).
|
||
// TODO(gri) Optimize this for the common case.
|
||
|
||
e := int64(x.exp) + int64(y.exp)
|
||
z.mant = z.mant.mul(x.mant, y.mant)
|
||
|
||
// normalize mantissa
|
||
z.setExp(e - fnorm(z.mant))
|
||
z.round(0)
|
||
}
|
||
|
||
// z = x / y, ignoring signs of x and y.
|
||
// x and y must not be 0, Inf, or NaN.
|
||
func (z *Float) uquo(x, y *Float) {
|
||
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
|
||
panic("uquo called with 0 argument")
|
||
}
|
||
|
||
// mantissa length in words for desired result precision + 1
|
||
// (at least one extra bit so we get the rounding bit after
|
||
// the division)
|
||
n := int(z.prec/_W) + 1
|
||
|
||
// compute adjusted x.mant such that we get enough result precision
|
||
xadj := x.mant
|
||
if d := n - len(x.mant) + len(y.mant); d > 0 {
|
||
// d extra words needed => add d "0 digits" to x
|
||
xadj = make(nat, len(x.mant)+d)
|
||
copy(xadj[d:], x.mant)
|
||
}
|
||
// TODO(gri): If we have too many digits (d < 0), we should be able
|
||
// to shorten x for faster division. But we must be extra careful
|
||
// with rounding in that case.
|
||
|
||
// Compute d before division since there may be aliasing of x.mant
|
||
// (via xadj) or y.mant with z.mant.
|
||
d := len(xadj) - len(y.mant)
|
||
|
||
// divide
|
||
var r nat
|
||
z.mant, r = z.mant.div(nil, xadj, y.mant)
|
||
|
||
// determine exponent
|
||
e := int64(x.exp) - int64(y.exp) - int64(d-len(z.mant))*_W
|
||
|
||
// normalize mantissa
|
||
z.setExp(e - fnorm(z.mant))
|
||
|
||
// The result is long enough to include (at least) the rounding bit.
|
||
// If there's a non-zero remainder, the corresponding fractional part
|
||
// (if it were computed), would have a non-zero sticky bit (if it were
|
||
// zero, it couldn't have a non-zero remainder).
|
||
var sbit uint
|
||
if len(r) > 0 {
|
||
sbit = 1
|
||
}
|
||
z.round(sbit)
|
||
}
|
||
|
||
// ucmp returns -1, 0, or 1, depending on whether x < y, x == y, or x > y,
|
||
// while ignoring the signs of x and y. x and y must not be 0, Inf, or NaN.
|
||
func (x *Float) ucmp(y *Float) int {
|
||
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
|
||
panic("ucmp called with 0 argument")
|
||
}
|
||
|
||
switch {
|
||
case x.exp < y.exp:
|
||
return -1
|
||
case x.exp > y.exp:
|
||
return 1
|
||
}
|
||
// x.exp == y.exp
|
||
|
||
// compare mantissas
|
||
i := len(x.mant)
|
||
j := len(y.mant)
|
||
for i > 0 || j > 0 {
|
||
var xm, ym Word
|
||
if i > 0 {
|
||
i--
|
||
xm = x.mant[i]
|
||
}
|
||
if j > 0 {
|
||
j--
|
||
ym = y.mant[j]
|
||
}
|
||
switch {
|
||
case xm < ym:
|
||
return -1
|
||
case xm > ym:
|
||
return 1
|
||
}
|
||
}
|
||
|
||
return 0
|
||
}
|
||
|
||
// Handling of sign bit as defined by IEEE 754-2008,
|
||
// section 6.3 (note that there are no NaN Floats):
|
||
//
|
||
// When neither the inputs nor result are NaN, the sign of a product or
|
||
// quotient is the exclusive OR of the operands’ signs; the sign of a sum,
|
||
// or of a difference x−y regarded as a sum x+(−y), differs from at most
|
||
// one of the addends’ signs; and the sign of the result of conversions,
|
||
// the quantize operation, the roundToIntegral operations, and the
|
||
// roundToIntegralExact (see 5.3.1) is the sign of the first or only operand.
|
||
// These rules shall apply even when operands or results are zero or infinite.
|
||
//
|
||
// When the sum of two operands with opposite signs (or the difference of
|
||
// two operands with like signs) is exactly zero, the sign of that sum (or
|
||
// difference) shall be +0 in all rounding-direction attributes except
|
||
// roundTowardNegative; under that attribute, the sign of an exact zero
|
||
// sum (or difference) shall be −0. However, x+x = x−(−x) retains the same
|
||
// sign as x even when x is zero.
|
||
//
|
||
// See also: http://play.golang.org/p/RtH3UCt5IH
|
||
|
||
// Add sets z to the rounded sum x+y and returns z.
|
||
// If z's precision is 0, it is changed to the larger
|
||
// of x's or y's precision before the operation.
|
||
// Rounding is performed according to z's precision
|
||
// and rounding mode; and z's accuracy reports the
|
||
// result error relative to the exact (not rounded)
|
||
// result.
|
||
// BUG(gri) If any of the operands is Inf, the result is NaN.
|
||
func (z *Float) Add(x, y *Float) *Float {
|
||
if debugFloat {
|
||
validate(x)
|
||
validate(y)
|
||
}
|
||
|
||
if z.prec == 0 {
|
||
z.prec = umax32(x.prec, y.prec)
|
||
}
|
||
|
||
// special cases
|
||
if len(x.mant) == 0 || len(y.mant) == 0 {
|
||
if x.exp <= infExp || y.exp <= infExp {
|
||
// TODO(gri) handle Inf separately
|
||
return z.SetNaN()
|
||
}
|
||
if len(x.mant) == 0 { // x == ±0
|
||
z.Set(y)
|
||
if len(z.mant) == 0 && z.exp == 0 {
|
||
z.neg = x.neg && y.neg // -0 + -0 == -0
|
||
}
|
||
return z
|
||
}
|
||
// y == ±0
|
||
return z.Set(x)
|
||
}
|
||
|
||
// x, y != 0
|
||
z.neg = x.neg
|
||
if x.neg == y.neg {
|
||
// x + y == x + y
|
||
// (-x) + (-y) == -(x + y)
|
||
z.uadd(x, y)
|
||
} else {
|
||
// x + (-y) == x - y == -(y - x)
|
||
// (-x) + y == y - x == -(x - y)
|
||
if x.ucmp(y) >= 0 {
|
||
z.usub(x, y)
|
||
} else {
|
||
z.neg = !z.neg
|
||
z.usub(y, x)
|
||
}
|
||
}
|
||
|
||
// -0 is only possible for -0 + -0
|
||
if len(z.mant) == 0 {
|
||
z.neg = false
|
||
}
|
||
|
||
return z
|
||
}
|
||
|
||
// Sub sets z to the rounded difference x-y and returns z.
|
||
// Precision, rounding, and accuracy reporting are as for Add.
|
||
// BUG(gri) If any of the operands is Inf, the result is NaN.
|
||
func (z *Float) Sub(x, y *Float) *Float {
|
||
if debugFloat {
|
||
validate(x)
|
||
validate(y)
|
||
}
|
||
|
||
if z.prec == 0 {
|
||
z.prec = umax32(x.prec, y.prec)
|
||
}
|
||
|
||
// special cases
|
||
if len(x.mant) == 0 || len(y.mant) == 0 {
|
||
if x.exp <= infExp || y.exp <= infExp {
|
||
// TODO(gri) handle Inf separately
|
||
return z.SetNaN()
|
||
}
|
||
if len(x.mant) == 0 { // x == ±0
|
||
z.Neg(y)
|
||
if len(z.mant) == 0 && z.exp == 0 {
|
||
z.neg = x.neg && !y.neg // -0 - 0 == -0
|
||
}
|
||
return z
|
||
}
|
||
// y == ±0
|
||
return z.Set(x)
|
||
}
|
||
|
||
// x, y != 0
|
||
z.neg = x.neg
|
||
if x.neg != y.neg {
|
||
// x - (-y) == x + y
|
||
// (-x) - y == -(x + y)
|
||
z.uadd(x, y)
|
||
} else {
|
||
// x - y == x - y == -(y - x)
|
||
// (-x) - (-y) == y - x == -(x - y)
|
||
if x.ucmp(y) >= 0 {
|
||
z.usub(x, y)
|
||
} else {
|
||
z.neg = !z.neg
|
||
z.usub(y, x)
|
||
}
|
||
}
|
||
|
||
// -0 is only possible for -0 - 0
|
||
if len(z.mant) == 0 {
|
||
z.neg = false
|
||
}
|
||
|
||
return z
|
||
}
|
||
|
||
// Mul sets z to the rounded product x*y and returns z.
|
||
// Precision, rounding, and accuracy reporting are as for Add.
|
||
// BUG(gri) If any of the operands is Inf, the result is NaN.
|
||
func (z *Float) Mul(x, y *Float) *Float {
|
||
if debugFloat {
|
||
validate(x)
|
||
validate(y)
|
||
}
|
||
|
||
if z.prec == 0 {
|
||
z.prec = umax32(x.prec, y.prec)
|
||
}
|
||
|
||
z.neg = x.neg != y.neg
|
||
|
||
// special cases
|
||
if len(x.mant) == 0 || len(y.mant) == 0 {
|
||
if x.exp <= infExp || y.exp <= infExp {
|
||
// TODO(gri) handle Inf separately
|
||
return z.SetNaN()
|
||
}
|
||
// x == ±0 || y == ±0
|
||
z.acc = Exact
|
||
z.setZero()
|
||
return z
|
||
}
|
||
|
||
if len(x.mant) == 0 || len(y.mant) == 0 {
|
||
z.acc = Exact
|
||
z.setZero()
|
||
return z
|
||
}
|
||
|
||
// x, y != 0
|
||
z.umul(x, y)
|
||
return z
|
||
}
|
||
|
||
// Quo sets z to the rounded quotient x/y and returns z.
|
||
// Precision, rounding, and accuracy reporting are as for Add.
|
||
// BUG(gri) If any of the operands is Inf, the result is NaN.
|
||
func (z *Float) Quo(x, y *Float) *Float {
|
||
if debugFloat {
|
||
validate(x)
|
||
validate(y)
|
||
}
|
||
|
||
if z.prec == 0 {
|
||
z.prec = umax32(x.prec, y.prec)
|
||
}
|
||
|
||
z.neg = x.neg != y.neg
|
||
|
||
// special cases
|
||
z.acc = Exact
|
||
if len(x.mant) == 0 || len(y.mant) == 0 {
|
||
if x.exp <= infExp || y.exp <= infExp {
|
||
// TODO(gri) handle Inf separately
|
||
return z.SetNaN()
|
||
}
|
||
if len(x.mant) == 0 {
|
||
if len(y.mant) == 0 {
|
||
return z.SetNaN()
|
||
}
|
||
z.setZero()
|
||
return z
|
||
}
|
||
// x != 0
|
||
if len(y.mant) == 0 {
|
||
z.setInf()
|
||
return z
|
||
}
|
||
}
|
||
|
||
// x, y != 0
|
||
z.uquo(x, y)
|
||
return z
|
||
}
|
||
|
||
// TODO(gri) eliminate Lsh, Rsh? We can do the same with MantExp, SetMantExp.
|
||
|
||
// Lsh sets z to the rounded x * (1<<s) and returns z.
|
||
// If z's precision is 0, it is changed to x's precision.
|
||
// Rounding is performed according to z's precision
|
||
// and rounding mode; and z's accuracy reports the
|
||
// result error relative to the exact (not rounded)
|
||
// result.
|
||
// BUG(gri) Lsh is not tested and may not work correctly.
|
||
func (z *Float) Lsh(x *Float, s uint) *Float {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
|
||
z.Set(x)
|
||
if len(x.mant) != 0 {
|
||
z.setExp(int64(z.exp) + int64(s))
|
||
}
|
||
|
||
return z
|
||
}
|
||
|
||
// Rsh sets z to the rounded x / (1<<s) and returns z.
|
||
// Precision, rounding, and accuracy reporting are as for Lsh.
|
||
// BUG(gri) Rsh is not tested and may not work correctly.
|
||
func (z *Float) Rsh(x *Float, s uint) *Float {
|
||
if debugFloat {
|
||
validate(x)
|
||
}
|
||
|
||
z.Set(x)
|
||
if len(x.mant) != 0 {
|
||
z.setExp(int64(z.exp) - int64(s))
|
||
}
|
||
|
||
return z
|
||
}
|
||
|
||
// Cmp compares x and y and returns:
|
||
//
|
||
// -1 if x < y
|
||
// 0 if x == y (incl. -0 == 0)
|
||
// +1 if x > y
|
||
//
|
||
// Infinities with matching sign are equal.
|
||
// NaN values are never equal.
|
||
// BUG(gri) comparing NaN's is not implemented
|
||
func (x *Float) Cmp(y *Float) int {
|
||
if debugFloat {
|
||
validate(x)
|
||
validate(y)
|
||
}
|
||
|
||
mx := x.ord()
|
||
my := y.ord()
|
||
switch {
|
||
case mx < my:
|
||
return -1
|
||
case mx > my:
|
||
return +1
|
||
}
|
||
// mx == my
|
||
|
||
// only if |mx| == 1 we have to compare the mantissae
|
||
switch mx {
|
||
case -1:
|
||
return -x.ucmp(y)
|
||
case +1:
|
||
return +x.ucmp(y)
|
||
}
|
||
|
||
return 0
|
||
}
|
||
|
||
func umax32(x, y uint32) uint32 {
|
||
if x > y {
|
||
return x
|
||
}
|
||
return y
|
||
}
|
||
|
||
// ord classifies x and returns:
|
||
//
|
||
// -2 if -Inf == x
|
||
// -1 if -Inf < x < 0
|
||
// 0 if x == 0 (signed or unsigned)
|
||
// +1 if 0 < x < +Inf
|
||
// +2 if x == +Inf
|
||
//
|
||
// TODO(gri) export (and remove IsInf)?
|
||
func (x *Float) ord() int {
|
||
m := 1 // common case
|
||
if len(x.mant) == 0 {
|
||
m = 0
|
||
if x.exp == infExp {
|
||
m = 2
|
||
}
|
||
if x.exp == nanExp {
|
||
panic("unimplemented")
|
||
}
|
||
}
|
||
if x.neg {
|
||
m = -m
|
||
}
|
||
return m
|
||
}
|