mirror of https://github.com/golang/go.git
1592 lines
44 KiB
Go
1592 lines
44 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package reflectdata
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
"internal/abi"
|
|
"internal/buildcfg"
|
|
"os"
|
|
"slices"
|
|
"sort"
|
|
"strings"
|
|
"sync"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/bitvec"
|
|
"cmd/compile/internal/compare"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/objw"
|
|
"cmd/compile/internal/rttype"
|
|
"cmd/compile/internal/staticdata"
|
|
"cmd/compile/internal/typebits"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/gcprog"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/objabi"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
type ptabEntry struct {
|
|
s *types.Sym
|
|
t *types.Type
|
|
}
|
|
|
|
// runtime interface and reflection data structures
|
|
var (
|
|
// protects signatset and signatslice
|
|
signatmu sync.Mutex
|
|
// Tracking which types need runtime type descriptor
|
|
signatset = make(map[*types.Type]struct{})
|
|
// Queue of types wait to be generated runtime type descriptor
|
|
signatslice []typeAndStr
|
|
|
|
gcsymmu sync.Mutex // protects gcsymset and gcsymslice
|
|
gcsymset = make(map[*types.Type]struct{})
|
|
)
|
|
|
|
type typeSig struct {
|
|
name *types.Sym
|
|
isym *obj.LSym
|
|
tsym *obj.LSym
|
|
type_ *types.Type
|
|
mtype *types.Type
|
|
}
|
|
|
|
func commonSize() int { return int(rttype.Type.Size()) } // Sizeof(runtime._type{})
|
|
|
|
func uncommonSize(t *types.Type) int { // Sizeof(runtime.uncommontype{})
|
|
if t.Sym() == nil && len(methods(t)) == 0 {
|
|
return 0
|
|
}
|
|
return int(rttype.UncommonType.Size())
|
|
}
|
|
|
|
func makefield(name string, t *types.Type) *types.Field {
|
|
sym := (*types.Pkg)(nil).Lookup(name)
|
|
return types.NewField(src.NoXPos, sym, t)
|
|
}
|
|
|
|
// methods returns the methods of the non-interface type t, sorted by name.
|
|
// Generates stub functions as needed.
|
|
func methods(t *types.Type) []*typeSig {
|
|
if t.HasShape() {
|
|
// Shape types have no methods.
|
|
return nil
|
|
}
|
|
// method type
|
|
mt := types.ReceiverBaseType(t)
|
|
|
|
if mt == nil {
|
|
return nil
|
|
}
|
|
typecheck.CalcMethods(mt)
|
|
|
|
// make list of methods for t,
|
|
// generating code if necessary.
|
|
var ms []*typeSig
|
|
for _, f := range mt.AllMethods() {
|
|
if f.Sym == nil {
|
|
base.Fatalf("method with no sym on %v", mt)
|
|
}
|
|
if !f.IsMethod() {
|
|
base.Fatalf("non-method on %v method %v %v", mt, f.Sym, f)
|
|
}
|
|
if f.Type.Recv() == nil {
|
|
base.Fatalf("receiver with no type on %v method %v %v", mt, f.Sym, f)
|
|
}
|
|
if f.Nointerface() && !t.IsFullyInstantiated() {
|
|
// Skip creating method wrappers if f is nointerface. But, if
|
|
// t is an instantiated type, we still have to call
|
|
// methodWrapper, because methodWrapper generates the actual
|
|
// generic method on the type as well.
|
|
continue
|
|
}
|
|
|
|
// get receiver type for this particular method.
|
|
// if pointer receiver but non-pointer t and
|
|
// this is not an embedded pointer inside a struct,
|
|
// method does not apply.
|
|
if !types.IsMethodApplicable(t, f) {
|
|
continue
|
|
}
|
|
|
|
sig := &typeSig{
|
|
name: f.Sym,
|
|
isym: methodWrapper(t, f, true),
|
|
tsym: methodWrapper(t, f, false),
|
|
type_: typecheck.NewMethodType(f.Type, t),
|
|
mtype: typecheck.NewMethodType(f.Type, nil),
|
|
}
|
|
if f.Nointerface() {
|
|
// In the case of a nointerface method on an instantiated
|
|
// type, don't actually append the typeSig.
|
|
continue
|
|
}
|
|
ms = append(ms, sig)
|
|
}
|
|
|
|
return ms
|
|
}
|
|
|
|
// imethods returns the methods of the interface type t, sorted by name.
|
|
func imethods(t *types.Type) []*typeSig {
|
|
var methods []*typeSig
|
|
for _, f := range t.AllMethods() {
|
|
if f.Type.Kind() != types.TFUNC || f.Sym == nil {
|
|
continue
|
|
}
|
|
if f.Sym.IsBlank() {
|
|
base.Fatalf("unexpected blank symbol in interface method set")
|
|
}
|
|
if n := len(methods); n > 0 {
|
|
last := methods[n-1]
|
|
if !last.name.Less(f.Sym) {
|
|
base.Fatalf("sigcmp vs sortinter %v %v", last.name, f.Sym)
|
|
}
|
|
}
|
|
|
|
sig := &typeSig{
|
|
name: f.Sym,
|
|
mtype: f.Type,
|
|
type_: typecheck.NewMethodType(f.Type, nil),
|
|
}
|
|
methods = append(methods, sig)
|
|
|
|
// NOTE(rsc): Perhaps an oversight that
|
|
// IfaceType.Method is not in the reflect data.
|
|
// Generate the method body, so that compiled
|
|
// code can refer to it.
|
|
methodWrapper(t, f, false)
|
|
}
|
|
|
|
return methods
|
|
}
|
|
|
|
func dimportpath(p *types.Pkg) {
|
|
if p.Pathsym != nil {
|
|
return
|
|
}
|
|
|
|
if p == types.LocalPkg && base.Ctxt.Pkgpath == "" {
|
|
panic("missing pkgpath")
|
|
}
|
|
|
|
// If we are compiling the runtime package, there are two runtime packages around
|
|
// -- localpkg and Pkgs.Runtime. We don't want to produce import path symbols for
|
|
// both of them, so just produce one for localpkg.
|
|
if base.Ctxt.Pkgpath == "runtime" && p == ir.Pkgs.Runtime {
|
|
return
|
|
}
|
|
|
|
s := base.Ctxt.Lookup("type:.importpath." + p.Prefix + ".")
|
|
ot := dnameData(s, 0, p.Path, "", nil, false, false)
|
|
objw.Global(s, int32(ot), obj.DUPOK|obj.RODATA)
|
|
s.Set(obj.AttrContentAddressable, true)
|
|
p.Pathsym = s
|
|
}
|
|
|
|
func dgopkgpath(c rttype.Cursor, pkg *types.Pkg) {
|
|
c = c.Field("Bytes")
|
|
if pkg == nil {
|
|
c.WritePtr(nil)
|
|
return
|
|
}
|
|
|
|
dimportpath(pkg)
|
|
c.WritePtr(pkg.Pathsym)
|
|
}
|
|
|
|
// dgopkgpathOff writes an offset relocation to the pkg path symbol to c.
|
|
func dgopkgpathOff(c rttype.Cursor, pkg *types.Pkg) {
|
|
if pkg == nil {
|
|
c.WriteInt32(0)
|
|
return
|
|
}
|
|
|
|
dimportpath(pkg)
|
|
c.WriteSymPtrOff(pkg.Pathsym, false)
|
|
}
|
|
|
|
// dnameField dumps a reflect.name for a struct field.
|
|
func dnameField(c rttype.Cursor, spkg *types.Pkg, ft *types.Field) {
|
|
if !types.IsExported(ft.Sym.Name) && ft.Sym.Pkg != spkg {
|
|
base.Fatalf("package mismatch for %v", ft.Sym)
|
|
}
|
|
nsym := dname(ft.Sym.Name, ft.Note, nil, types.IsExported(ft.Sym.Name), ft.Embedded != 0)
|
|
c.Field("Bytes").WritePtr(nsym)
|
|
}
|
|
|
|
// dnameData writes the contents of a reflect.name into s at offset ot.
|
|
func dnameData(s *obj.LSym, ot int, name, tag string, pkg *types.Pkg, exported, embedded bool) int {
|
|
if len(name) >= 1<<29 {
|
|
base.Fatalf("name too long: %d %s...", len(name), name[:1024])
|
|
}
|
|
if len(tag) >= 1<<29 {
|
|
base.Fatalf("tag too long: %d %s...", len(tag), tag[:1024])
|
|
}
|
|
var nameLen [binary.MaxVarintLen64]byte
|
|
nameLenLen := binary.PutUvarint(nameLen[:], uint64(len(name)))
|
|
var tagLen [binary.MaxVarintLen64]byte
|
|
tagLenLen := binary.PutUvarint(tagLen[:], uint64(len(tag)))
|
|
|
|
// Encode name and tag. See reflect/type.go for details.
|
|
var bits byte
|
|
l := 1 + nameLenLen + len(name)
|
|
if exported {
|
|
bits |= 1 << 0
|
|
}
|
|
if len(tag) > 0 {
|
|
l += tagLenLen + len(tag)
|
|
bits |= 1 << 1
|
|
}
|
|
if pkg != nil {
|
|
bits |= 1 << 2
|
|
}
|
|
if embedded {
|
|
bits |= 1 << 3
|
|
}
|
|
b := make([]byte, l)
|
|
b[0] = bits
|
|
copy(b[1:], nameLen[:nameLenLen])
|
|
copy(b[1+nameLenLen:], name)
|
|
if len(tag) > 0 {
|
|
tb := b[1+nameLenLen+len(name):]
|
|
copy(tb, tagLen[:tagLenLen])
|
|
copy(tb[tagLenLen:], tag)
|
|
}
|
|
|
|
ot = int(s.WriteBytes(base.Ctxt, int64(ot), b))
|
|
|
|
if pkg != nil {
|
|
c := rttype.NewCursor(s, int64(ot), types.Types[types.TUINT32])
|
|
dgopkgpathOff(c, pkg)
|
|
ot += 4
|
|
}
|
|
|
|
return ot
|
|
}
|
|
|
|
var dnameCount int
|
|
|
|
// dname creates a reflect.name for a struct field or method.
|
|
func dname(name, tag string, pkg *types.Pkg, exported, embedded bool) *obj.LSym {
|
|
// Write out data as "type:." to signal two things to the
|
|
// linker, first that when dynamically linking, the symbol
|
|
// should be moved to a relro section, and second that the
|
|
// contents should not be decoded as a type.
|
|
sname := "type:.namedata."
|
|
if pkg == nil {
|
|
// In the common case, share data with other packages.
|
|
if name == "" {
|
|
if exported {
|
|
sname += "-noname-exported." + tag
|
|
} else {
|
|
sname += "-noname-unexported." + tag
|
|
}
|
|
} else {
|
|
if exported {
|
|
sname += name + "." + tag
|
|
} else {
|
|
sname += name + "-" + tag
|
|
}
|
|
}
|
|
} else {
|
|
// TODO(mdempsky): We should be able to share these too (except
|
|
// maybe when dynamic linking).
|
|
sname = fmt.Sprintf("%s%s.%d", sname, types.LocalPkg.Prefix, dnameCount)
|
|
dnameCount++
|
|
}
|
|
if embedded {
|
|
sname += ".embedded"
|
|
}
|
|
s := base.Ctxt.Lookup(sname)
|
|
if len(s.P) > 0 {
|
|
return s
|
|
}
|
|
ot := dnameData(s, 0, name, tag, pkg, exported, embedded)
|
|
objw.Global(s, int32(ot), obj.DUPOK|obj.RODATA)
|
|
s.Set(obj.AttrContentAddressable, true)
|
|
return s
|
|
}
|
|
|
|
// dextratype dumps the fields of a runtime.uncommontype.
|
|
// dataAdd is the offset in bytes after the header where the
|
|
// backing array of the []method field should be written.
|
|
func dextratype(lsym *obj.LSym, off int64, t *types.Type, dataAdd int) {
|
|
m := methods(t)
|
|
if t.Sym() == nil && len(m) == 0 {
|
|
base.Fatalf("extra requested of type with no extra info %v", t)
|
|
}
|
|
noff := types.RoundUp(off, int64(types.PtrSize))
|
|
if noff != off {
|
|
base.Fatalf("unexpected alignment in dextratype for %v", t)
|
|
}
|
|
|
|
for _, a := range m {
|
|
writeType(a.type_)
|
|
}
|
|
|
|
c := rttype.NewCursor(lsym, off, rttype.UncommonType)
|
|
dgopkgpathOff(c.Field("PkgPath"), typePkg(t))
|
|
|
|
dataAdd += uncommonSize(t)
|
|
mcount := len(m)
|
|
if mcount != int(uint16(mcount)) {
|
|
base.Fatalf("too many methods on %v: %d", t, mcount)
|
|
}
|
|
xcount := sort.Search(mcount, func(i int) bool { return !types.IsExported(m[i].name.Name) })
|
|
if dataAdd != int(uint32(dataAdd)) {
|
|
base.Fatalf("methods are too far away on %v: %d", t, dataAdd)
|
|
}
|
|
|
|
c.Field("Mcount").WriteUint16(uint16(mcount))
|
|
c.Field("Xcount").WriteUint16(uint16(xcount))
|
|
c.Field("Moff").WriteUint32(uint32(dataAdd))
|
|
// Note: there is an unused uint32 field here.
|
|
|
|
// Write the backing array for the []method field.
|
|
array := rttype.NewArrayCursor(lsym, off+int64(dataAdd), rttype.Method, mcount)
|
|
for i, a := range m {
|
|
exported := types.IsExported(a.name.Name)
|
|
var pkg *types.Pkg
|
|
if !exported && a.name.Pkg != typePkg(t) {
|
|
pkg = a.name.Pkg
|
|
}
|
|
nsym := dname(a.name.Name, "", pkg, exported, false)
|
|
|
|
e := array.Elem(i)
|
|
e.Field("Name").WriteSymPtrOff(nsym, false)
|
|
dmethodptrOff(e.Field("Mtyp"), writeType(a.mtype))
|
|
dmethodptrOff(e.Field("Ifn"), a.isym)
|
|
dmethodptrOff(e.Field("Tfn"), a.tsym)
|
|
}
|
|
}
|
|
|
|
func typePkg(t *types.Type) *types.Pkg {
|
|
tsym := t.Sym()
|
|
if tsym == nil {
|
|
switch t.Kind() {
|
|
case types.TARRAY, types.TSLICE, types.TPTR, types.TCHAN:
|
|
if t.Elem() != nil {
|
|
tsym = t.Elem().Sym()
|
|
}
|
|
}
|
|
}
|
|
if tsym != nil && tsym.Pkg != types.BuiltinPkg {
|
|
return tsym.Pkg
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func dmethodptrOff(c rttype.Cursor, x *obj.LSym) {
|
|
c.WriteInt32(0)
|
|
r := c.Reloc()
|
|
r.Sym = x
|
|
r.Type = objabi.R_METHODOFF
|
|
}
|
|
|
|
var kinds = []abi.Kind{
|
|
types.TINT: abi.Int,
|
|
types.TUINT: abi.Uint,
|
|
types.TINT8: abi.Int8,
|
|
types.TUINT8: abi.Uint8,
|
|
types.TINT16: abi.Int16,
|
|
types.TUINT16: abi.Uint16,
|
|
types.TINT32: abi.Int32,
|
|
types.TUINT32: abi.Uint32,
|
|
types.TINT64: abi.Int64,
|
|
types.TUINT64: abi.Uint64,
|
|
types.TUINTPTR: abi.Uintptr,
|
|
types.TFLOAT32: abi.Float32,
|
|
types.TFLOAT64: abi.Float64,
|
|
types.TBOOL: abi.Bool,
|
|
types.TSTRING: abi.String,
|
|
types.TPTR: abi.Pointer,
|
|
types.TSTRUCT: abi.Struct,
|
|
types.TINTER: abi.Interface,
|
|
types.TCHAN: abi.Chan,
|
|
types.TMAP: abi.Map,
|
|
types.TARRAY: abi.Array,
|
|
types.TSLICE: abi.Slice,
|
|
types.TFUNC: abi.Func,
|
|
types.TCOMPLEX64: abi.Complex64,
|
|
types.TCOMPLEX128: abi.Complex128,
|
|
types.TUNSAFEPTR: abi.UnsafePointer,
|
|
}
|
|
|
|
var (
|
|
memhashvarlen *obj.LSym
|
|
memequalvarlen *obj.LSym
|
|
)
|
|
|
|
// dcommontype dumps the contents of a reflect.rtype (runtime._type) to c.
|
|
func dcommontype(c rttype.Cursor, t *types.Type) {
|
|
types.CalcSize(t)
|
|
eqfunc := geneq(t)
|
|
|
|
sptrWeak := true
|
|
var sptr *obj.LSym
|
|
if !t.IsPtr() || t.IsPtrElem() {
|
|
tptr := types.NewPtr(t)
|
|
if t.Sym() != nil || methods(tptr) != nil {
|
|
sptrWeak = false
|
|
}
|
|
sptr = writeType(tptr)
|
|
}
|
|
|
|
gcsym, useGCProg, ptrdata := dgcsym(t, true)
|
|
delete(gcsymset, t)
|
|
|
|
// ../../../../reflect/type.go:/^type.rtype
|
|
// actual type structure
|
|
// type rtype struct {
|
|
// size uintptr
|
|
// ptrdata uintptr
|
|
// hash uint32
|
|
// tflag tflag
|
|
// align uint8
|
|
// fieldAlign uint8
|
|
// kind uint8
|
|
// equal func(unsafe.Pointer, unsafe.Pointer) bool
|
|
// gcdata *byte
|
|
// str nameOff
|
|
// ptrToThis typeOff
|
|
// }
|
|
c.Field("Size_").WriteUintptr(uint64(t.Size()))
|
|
c.Field("PtrBytes").WriteUintptr(uint64(ptrdata))
|
|
c.Field("Hash").WriteUint32(types.TypeHash(t))
|
|
|
|
var tflag abi.TFlag
|
|
if uncommonSize(t) != 0 {
|
|
tflag |= abi.TFlagUncommon
|
|
}
|
|
if t.Sym() != nil && t.Sym().Name != "" {
|
|
tflag |= abi.TFlagNamed
|
|
}
|
|
if compare.IsRegularMemory(t) {
|
|
tflag |= abi.TFlagRegularMemory
|
|
}
|
|
|
|
exported := false
|
|
p := t.NameString()
|
|
// If we're writing out type T,
|
|
// we are very likely to write out type *T as well.
|
|
// Use the string "*T"[1:] for "T", so that the two
|
|
// share storage. This is a cheap way to reduce the
|
|
// amount of space taken up by reflect strings.
|
|
if !strings.HasPrefix(p, "*") {
|
|
p = "*" + p
|
|
tflag |= abi.TFlagExtraStar
|
|
if t.Sym() != nil {
|
|
exported = types.IsExported(t.Sym().Name)
|
|
}
|
|
} else {
|
|
if t.Elem() != nil && t.Elem().Sym() != nil {
|
|
exported = types.IsExported(t.Elem().Sym().Name)
|
|
}
|
|
}
|
|
|
|
if tflag != abi.TFlag(uint8(tflag)) {
|
|
// this should optimize away completely
|
|
panic("Unexpected change in size of abi.TFlag")
|
|
}
|
|
c.Field("TFlag").WriteUint8(uint8(tflag))
|
|
|
|
// runtime (and common sense) expects alignment to be a power of two.
|
|
i := int(uint8(t.Alignment()))
|
|
|
|
if i == 0 {
|
|
i = 1
|
|
}
|
|
if i&(i-1) != 0 {
|
|
base.Fatalf("invalid alignment %d for %v", uint8(t.Alignment()), t)
|
|
}
|
|
c.Field("Align_").WriteUint8(uint8(t.Alignment()))
|
|
c.Field("FieldAlign_").WriteUint8(uint8(t.Alignment()))
|
|
|
|
kind := kinds[t.Kind()]
|
|
if types.IsDirectIface(t) {
|
|
kind |= abi.KindDirectIface
|
|
}
|
|
if useGCProg {
|
|
kind |= abi.KindGCProg
|
|
}
|
|
c.Field("Kind_").WriteUint8(uint8(kind))
|
|
|
|
c.Field("Equal").WritePtr(eqfunc)
|
|
c.Field("GCData").WritePtr(gcsym)
|
|
|
|
nsym := dname(p, "", nil, exported, false)
|
|
c.Field("Str").WriteSymPtrOff(nsym, false)
|
|
c.Field("PtrToThis").WriteSymPtrOff(sptr, sptrWeak)
|
|
}
|
|
|
|
// TrackSym returns the symbol for tracking use of field/method f, assumed
|
|
// to be a member of struct/interface type t.
|
|
func TrackSym(t *types.Type, f *types.Field) *obj.LSym {
|
|
return base.PkgLinksym("go:track", t.LinkString()+"."+f.Sym.Name, obj.ABI0)
|
|
}
|
|
|
|
func TypeSymPrefix(prefix string, t *types.Type) *types.Sym {
|
|
p := prefix + "." + t.LinkString()
|
|
s := types.TypeSymLookup(p)
|
|
|
|
// This function is for looking up type-related generated functions
|
|
// (e.g. eq and hash). Make sure they are indeed generated.
|
|
signatmu.Lock()
|
|
NeedRuntimeType(t)
|
|
signatmu.Unlock()
|
|
|
|
//print("algsym: %s -> %+S\n", p, s);
|
|
|
|
return s
|
|
}
|
|
|
|
func TypeSym(t *types.Type) *types.Sym {
|
|
if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() {
|
|
base.Fatalf("TypeSym %v", t)
|
|
}
|
|
if t.Kind() == types.TFUNC && t.Recv() != nil {
|
|
base.Fatalf("misuse of method type: %v", t)
|
|
}
|
|
s := types.TypeSym(t)
|
|
signatmu.Lock()
|
|
NeedRuntimeType(t)
|
|
signatmu.Unlock()
|
|
return s
|
|
}
|
|
|
|
func TypeLinksymPrefix(prefix string, t *types.Type) *obj.LSym {
|
|
return TypeSymPrefix(prefix, t).Linksym()
|
|
}
|
|
|
|
func TypeLinksymLookup(name string) *obj.LSym {
|
|
return types.TypeSymLookup(name).Linksym()
|
|
}
|
|
|
|
func TypeLinksym(t *types.Type) *obj.LSym {
|
|
lsym := TypeSym(t).Linksym()
|
|
signatmu.Lock()
|
|
if lsym.Extra == nil {
|
|
ti := lsym.NewTypeInfo()
|
|
ti.Type = t
|
|
}
|
|
signatmu.Unlock()
|
|
return lsym
|
|
}
|
|
|
|
// TypePtrAt returns an expression that evaluates to the
|
|
// *runtime._type value for t.
|
|
func TypePtrAt(pos src.XPos, t *types.Type) *ir.AddrExpr {
|
|
return typecheck.LinksymAddr(pos, TypeLinksym(t), types.Types[types.TUINT8])
|
|
}
|
|
|
|
// ITabLsym returns the LSym representing the itab for concrete type typ implementing
|
|
// interface iface. A dummy tab will be created in the unusual case where typ doesn't
|
|
// implement iface. Normally, this wouldn't happen, because the typechecker would
|
|
// have reported a compile-time error. This situation can only happen when the
|
|
// destination type of a type assert or a type in a type switch is parameterized, so
|
|
// it may sometimes, but not always, be a type that can't implement the specified
|
|
// interface.
|
|
func ITabLsym(typ, iface *types.Type) *obj.LSym {
|
|
s, existed := ir.Pkgs.Itab.LookupOK(typ.LinkString() + "," + iface.LinkString())
|
|
lsym := s.Linksym()
|
|
|
|
if !existed {
|
|
writeITab(lsym, typ, iface, true)
|
|
}
|
|
return lsym
|
|
}
|
|
|
|
// ITabAddrAt returns an expression that evaluates to the
|
|
// *runtime.itab value for concrete type typ implementing interface
|
|
// iface.
|
|
func ITabAddrAt(pos src.XPos, typ, iface *types.Type) *ir.AddrExpr {
|
|
s, existed := ir.Pkgs.Itab.LookupOK(typ.LinkString() + "," + iface.LinkString())
|
|
lsym := s.Linksym()
|
|
|
|
if !existed {
|
|
writeITab(lsym, typ, iface, false)
|
|
}
|
|
|
|
return typecheck.LinksymAddr(pos, lsym, types.Types[types.TUINT8])
|
|
}
|
|
|
|
// needkeyupdate reports whether map updates with t as a key
|
|
// need the key to be updated.
|
|
func needkeyupdate(t *types.Type) bool {
|
|
switch t.Kind() {
|
|
case types.TBOOL, types.TINT, types.TUINT, types.TINT8, types.TUINT8, types.TINT16, types.TUINT16, types.TINT32, types.TUINT32,
|
|
types.TINT64, types.TUINT64, types.TUINTPTR, types.TPTR, types.TUNSAFEPTR, types.TCHAN:
|
|
return false
|
|
|
|
case types.TFLOAT32, types.TFLOAT64, types.TCOMPLEX64, types.TCOMPLEX128, // floats and complex can be +0/-0
|
|
types.TINTER,
|
|
types.TSTRING: // strings might have smaller backing stores
|
|
return true
|
|
|
|
case types.TARRAY:
|
|
return needkeyupdate(t.Elem())
|
|
|
|
case types.TSTRUCT:
|
|
for _, t1 := range t.Fields() {
|
|
if needkeyupdate(t1.Type) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
|
|
default:
|
|
base.Fatalf("bad type for map key: %v", t)
|
|
return true
|
|
}
|
|
}
|
|
|
|
// hashMightPanic reports whether the hash of a map key of type t might panic.
|
|
func hashMightPanic(t *types.Type) bool {
|
|
switch t.Kind() {
|
|
case types.TINTER:
|
|
return true
|
|
|
|
case types.TARRAY:
|
|
return hashMightPanic(t.Elem())
|
|
|
|
case types.TSTRUCT:
|
|
for _, t1 := range t.Fields() {
|
|
if hashMightPanic(t1.Type) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// formalType replaces predeclared aliases with real types.
|
|
// They've been separate internally to make error messages
|
|
// better, but we have to merge them in the reflect tables.
|
|
func formalType(t *types.Type) *types.Type {
|
|
switch t {
|
|
case types.AnyType, types.ByteType, types.RuneType:
|
|
return types.Types[t.Kind()]
|
|
}
|
|
return t
|
|
}
|
|
|
|
func writeType(t *types.Type) *obj.LSym {
|
|
t = formalType(t)
|
|
if t.IsUntyped() {
|
|
base.Fatalf("writeType %v", t)
|
|
}
|
|
|
|
s := types.TypeSym(t)
|
|
lsym := s.Linksym()
|
|
|
|
// special case (look for runtime below):
|
|
// when compiling package runtime,
|
|
// emit the type structures for int, float, etc.
|
|
tbase := t
|
|
if t.IsPtr() && t.Sym() == nil && t.Elem().Sym() != nil {
|
|
tbase = t.Elem()
|
|
}
|
|
if tbase.Kind() == types.TFORW {
|
|
base.Fatalf("unresolved defined type: %v", tbase)
|
|
}
|
|
|
|
// This is a fake type we generated for our builtin pseudo-runtime
|
|
// package. We'll emit a description for the real type while
|
|
// compiling package runtime, so we don't need or want to emit one
|
|
// from this fake type.
|
|
if sym := tbase.Sym(); sym != nil && sym.Pkg == ir.Pkgs.Runtime {
|
|
return lsym
|
|
}
|
|
|
|
if s.Siggen() {
|
|
return lsym
|
|
}
|
|
s.SetSiggen(true)
|
|
|
|
if !NeedEmit(tbase) {
|
|
if i := typecheck.BaseTypeIndex(t); i >= 0 {
|
|
lsym.Pkg = tbase.Sym().Pkg.Prefix
|
|
lsym.SymIdx = int32(i)
|
|
lsym.Set(obj.AttrIndexed, true)
|
|
}
|
|
|
|
// TODO(mdempsky): Investigate whether this still happens.
|
|
// If we know we don't need to emit code for a type,
|
|
// we should have a link-symbol index for it.
|
|
// See also TODO in NeedEmit.
|
|
return lsym
|
|
}
|
|
|
|
// Type layout Written by Marker
|
|
// +--------------------------------+ - 0
|
|
// | abi/internal.Type | dcommontype
|
|
// +--------------------------------+ - A
|
|
// | additional type-dependent | code in the switch below
|
|
// | fields, e.g. |
|
|
// | abi/internal.ArrayType.Len |
|
|
// +--------------------------------+ - B
|
|
// | internal/abi.UncommonType | dextratype
|
|
// | This section is optional, |
|
|
// | if type has a name or methods |
|
|
// +--------------------------------+ - C
|
|
// | variable-length data | code in the switch below
|
|
// | referenced by |
|
|
// | type-dependent fields, e.g. |
|
|
// | abi/internal.StructType.Fields |
|
|
// | dataAdd = size of this section |
|
|
// +--------------------------------+ - D
|
|
// | method list, if any | dextratype
|
|
// +--------------------------------+ - E
|
|
|
|
// UncommonType section is included if we have a name or a method.
|
|
extra := t.Sym() != nil || len(methods(t)) != 0
|
|
|
|
// Decide the underlying type of the descriptor, and remember
|
|
// the size we need for variable-length data.
|
|
var rt *types.Type
|
|
dataAdd := 0
|
|
switch t.Kind() {
|
|
default:
|
|
rt = rttype.Type
|
|
case types.TARRAY:
|
|
rt = rttype.ArrayType
|
|
case types.TSLICE:
|
|
rt = rttype.SliceType
|
|
case types.TCHAN:
|
|
rt = rttype.ChanType
|
|
case types.TFUNC:
|
|
rt = rttype.FuncType
|
|
dataAdd = (t.NumRecvs() + t.NumParams() + t.NumResults()) * types.PtrSize
|
|
case types.TINTER:
|
|
rt = rttype.InterfaceType
|
|
dataAdd = len(imethods(t)) * int(rttype.IMethod.Size())
|
|
case types.TMAP:
|
|
if buildcfg.Experiment.SwissMap {
|
|
rt = rttype.SwissMapType
|
|
} else {
|
|
rt = rttype.OldMapType
|
|
}
|
|
case types.TPTR:
|
|
rt = rttype.PtrType
|
|
// TODO: use rttype.Type for Elem() is ANY?
|
|
case types.TSTRUCT:
|
|
rt = rttype.StructType
|
|
dataAdd = t.NumFields() * int(rttype.StructField.Size())
|
|
}
|
|
|
|
// Compute offsets of each section.
|
|
B := rt.Size()
|
|
C := B
|
|
if extra {
|
|
C = B + rttype.UncommonType.Size()
|
|
}
|
|
D := C + int64(dataAdd)
|
|
E := D + int64(len(methods(t)))*rttype.Method.Size()
|
|
|
|
// Write the runtime._type
|
|
c := rttype.NewCursor(lsym, 0, rt)
|
|
if rt == rttype.Type {
|
|
dcommontype(c, t)
|
|
} else {
|
|
dcommontype(c.Field("Type"), t)
|
|
}
|
|
|
|
// Write additional type-specific data
|
|
// (Both the fixed size and variable-sized sections.)
|
|
switch t.Kind() {
|
|
case types.TARRAY:
|
|
// internal/abi.ArrayType
|
|
s1 := writeType(t.Elem())
|
|
t2 := types.NewSlice(t.Elem())
|
|
s2 := writeType(t2)
|
|
c.Field("Elem").WritePtr(s1)
|
|
c.Field("Slice").WritePtr(s2)
|
|
c.Field("Len").WriteUintptr(uint64(t.NumElem()))
|
|
|
|
case types.TSLICE:
|
|
// internal/abi.SliceType
|
|
s1 := writeType(t.Elem())
|
|
c.Field("Elem").WritePtr(s1)
|
|
|
|
case types.TCHAN:
|
|
// internal/abi.ChanType
|
|
s1 := writeType(t.Elem())
|
|
c.Field("Elem").WritePtr(s1)
|
|
c.Field("Dir").WriteInt(int64(t.ChanDir()))
|
|
|
|
case types.TFUNC:
|
|
// internal/abi.FuncType
|
|
for _, t1 := range t.RecvParamsResults() {
|
|
writeType(t1.Type)
|
|
}
|
|
inCount := t.NumRecvs() + t.NumParams()
|
|
outCount := t.NumResults()
|
|
if t.IsVariadic() {
|
|
outCount |= 1 << 15
|
|
}
|
|
|
|
c.Field("InCount").WriteUint16(uint16(inCount))
|
|
c.Field("OutCount").WriteUint16(uint16(outCount))
|
|
|
|
// Array of rtype pointers follows funcType.
|
|
typs := t.RecvParamsResults()
|
|
array := rttype.NewArrayCursor(lsym, C, types.Types[types.TUNSAFEPTR], len(typs))
|
|
for i, t1 := range typs {
|
|
array.Elem(i).WritePtr(writeType(t1.Type))
|
|
}
|
|
|
|
case types.TINTER:
|
|
// internal/abi.InterfaceType
|
|
m := imethods(t)
|
|
n := len(m)
|
|
for _, a := range m {
|
|
writeType(a.type_)
|
|
}
|
|
|
|
var tpkg *types.Pkg
|
|
if t.Sym() != nil && t != types.Types[t.Kind()] && t != types.ErrorType {
|
|
tpkg = t.Sym().Pkg
|
|
}
|
|
dgopkgpath(c.Field("PkgPath"), tpkg)
|
|
c.Field("Methods").WriteSlice(lsym, C, int64(n), int64(n))
|
|
|
|
array := rttype.NewArrayCursor(lsym, C, rttype.IMethod, n)
|
|
for i, a := range m {
|
|
exported := types.IsExported(a.name.Name)
|
|
var pkg *types.Pkg
|
|
if !exported && a.name.Pkg != tpkg {
|
|
pkg = a.name.Pkg
|
|
}
|
|
nsym := dname(a.name.Name, "", pkg, exported, false)
|
|
|
|
e := array.Elem(i)
|
|
e.Field("Name").WriteSymPtrOff(nsym, false)
|
|
e.Field("Typ").WriteSymPtrOff(writeType(a.type_), false)
|
|
}
|
|
|
|
case types.TMAP:
|
|
if buildcfg.Experiment.SwissMap {
|
|
writeSwissMapType(t, lsym, c)
|
|
} else {
|
|
writeOldMapType(t, lsym, c)
|
|
}
|
|
|
|
case types.TPTR:
|
|
// internal/abi.PtrType
|
|
if t.Elem().Kind() == types.TANY {
|
|
base.Fatalf("bad pointer base type")
|
|
}
|
|
|
|
s1 := writeType(t.Elem())
|
|
c.Field("Elem").WritePtr(s1)
|
|
|
|
case types.TSTRUCT:
|
|
// internal/abi.StructType
|
|
fields := t.Fields()
|
|
for _, t1 := range fields {
|
|
writeType(t1.Type)
|
|
}
|
|
|
|
// All non-exported struct field names within a struct
|
|
// type must originate from a single package. By
|
|
// identifying and recording that package within the
|
|
// struct type descriptor, we can omit that
|
|
// information from the field descriptors.
|
|
var spkg *types.Pkg
|
|
for _, f := range fields {
|
|
if !types.IsExported(f.Sym.Name) {
|
|
spkg = f.Sym.Pkg
|
|
break
|
|
}
|
|
}
|
|
|
|
dgopkgpath(c.Field("PkgPath"), spkg)
|
|
c.Field("Fields").WriteSlice(lsym, C, int64(len(fields)), int64(len(fields)))
|
|
|
|
array := rttype.NewArrayCursor(lsym, C, rttype.StructField, len(fields))
|
|
for i, f := range fields {
|
|
e := array.Elem(i)
|
|
dnameField(e.Field("Name"), spkg, f)
|
|
e.Field("Typ").WritePtr(writeType(f.Type))
|
|
e.Field("Offset").WriteUintptr(uint64(f.Offset))
|
|
}
|
|
}
|
|
|
|
// Write the extra info, if any.
|
|
if extra {
|
|
dextratype(lsym, B, t, dataAdd)
|
|
}
|
|
|
|
// Note: DUPOK is required to ensure that we don't end up with more
|
|
// than one type descriptor for a given type, if the type descriptor
|
|
// can be defined in multiple packages, that is, unnamed types,
|
|
// instantiated types and shape types.
|
|
dupok := 0
|
|
if tbase.Sym() == nil || tbase.IsFullyInstantiated() || tbase.HasShape() {
|
|
dupok = obj.DUPOK
|
|
}
|
|
|
|
objw.Global(lsym, int32(E), int16(dupok|obj.RODATA))
|
|
|
|
// The linker will leave a table of all the typelinks for
|
|
// types in the binary, so the runtime can find them.
|
|
//
|
|
// When buildmode=shared, all types are in typelinks so the
|
|
// runtime can deduplicate type pointers.
|
|
keep := base.Ctxt.Flag_dynlink
|
|
if !keep && t.Sym() == nil {
|
|
// For an unnamed type, we only need the link if the type can
|
|
// be created at run time by reflect.PointerTo and similar
|
|
// functions. If the type exists in the program, those
|
|
// functions must return the existing type structure rather
|
|
// than creating a new one.
|
|
switch t.Kind() {
|
|
case types.TPTR, types.TARRAY, types.TCHAN, types.TFUNC, types.TMAP, types.TSLICE, types.TSTRUCT:
|
|
keep = true
|
|
}
|
|
}
|
|
// Do not put Noalg types in typelinks. See issue #22605.
|
|
if types.TypeHasNoAlg(t) {
|
|
keep = false
|
|
}
|
|
lsym.Set(obj.AttrMakeTypelink, keep)
|
|
|
|
return lsym
|
|
}
|
|
|
|
// InterfaceMethodOffset returns the offset of the i-th method in the interface
|
|
// type descriptor, ityp.
|
|
func InterfaceMethodOffset(ityp *types.Type, i int64) int64 {
|
|
// interface type descriptor layout is struct {
|
|
// _type // commonSize
|
|
// pkgpath // 1 word
|
|
// []imethod // 3 words (pointing to [...]imethod below)
|
|
// uncommontype // uncommonSize
|
|
// [...]imethod
|
|
// }
|
|
// The size of imethod is 8.
|
|
return int64(commonSize()+4*types.PtrSize+uncommonSize(ityp)) + i*8
|
|
}
|
|
|
|
// NeedRuntimeType ensures that a runtime type descriptor is emitted for t.
|
|
func NeedRuntimeType(t *types.Type) {
|
|
if _, ok := signatset[t]; !ok {
|
|
signatset[t] = struct{}{}
|
|
signatslice = append(signatslice, typeAndStr{t: t, short: types.TypeSymName(t), regular: t.String()})
|
|
}
|
|
}
|
|
|
|
func WriteRuntimeTypes() {
|
|
// Process signatslice. Use a loop, as writeType adds
|
|
// entries to signatslice while it is being processed.
|
|
for len(signatslice) > 0 {
|
|
signats := signatslice
|
|
// Sort for reproducible builds.
|
|
slices.SortFunc(signats, typesStrCmp)
|
|
for _, ts := range signats {
|
|
t := ts.t
|
|
writeType(t)
|
|
if t.Sym() != nil {
|
|
writeType(types.NewPtr(t))
|
|
}
|
|
}
|
|
signatslice = signatslice[len(signats):]
|
|
}
|
|
}
|
|
|
|
func WriteGCSymbols() {
|
|
// Emit GC data symbols.
|
|
gcsyms := make([]typeAndStr, 0, len(gcsymset))
|
|
for t := range gcsymset {
|
|
gcsyms = append(gcsyms, typeAndStr{t: t, short: types.TypeSymName(t), regular: t.String()})
|
|
}
|
|
slices.SortFunc(gcsyms, typesStrCmp)
|
|
for _, ts := range gcsyms {
|
|
dgcsym(ts.t, true)
|
|
}
|
|
}
|
|
|
|
// writeITab writes the itab for concrete type typ implementing interface iface. If
|
|
// allowNonImplement is true, allow the case where typ does not implement iface, and just
|
|
// create a dummy itab with zeroed-out method entries.
|
|
func writeITab(lsym *obj.LSym, typ, iface *types.Type, allowNonImplement bool) {
|
|
// TODO(mdempsky): Fix methodWrapper, geneq, and genhash (and maybe
|
|
// others) to stop clobbering these.
|
|
oldpos, oldfn := base.Pos, ir.CurFunc
|
|
defer func() { base.Pos, ir.CurFunc = oldpos, oldfn }()
|
|
|
|
if typ == nil || (typ.IsPtr() && typ.Elem() == nil) || typ.IsUntyped() || iface == nil || !iface.IsInterface() || iface.IsEmptyInterface() {
|
|
base.Fatalf("writeITab(%v, %v)", typ, iface)
|
|
}
|
|
|
|
sigs := iface.AllMethods()
|
|
entries := make([]*obj.LSym, 0, len(sigs))
|
|
|
|
// both sigs and methods are sorted by name,
|
|
// so we can find the intersection in a single pass
|
|
for _, m := range methods(typ) {
|
|
if m.name == sigs[0].Sym {
|
|
entries = append(entries, m.isym)
|
|
if m.isym == nil {
|
|
panic("NO ISYM")
|
|
}
|
|
sigs = sigs[1:]
|
|
if len(sigs) == 0 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
completeItab := len(sigs) == 0
|
|
if !allowNonImplement && !completeItab {
|
|
base.Fatalf("incomplete itab")
|
|
}
|
|
|
|
// dump empty itab symbol into i.sym
|
|
// type itab struct {
|
|
// inter *interfacetype
|
|
// _type *_type
|
|
// hash uint32 // copy of _type.hash. Used for type switches.
|
|
// _ [4]byte
|
|
// fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter.
|
|
// }
|
|
c := rttype.NewCursor(lsym, 0, rttype.ITab)
|
|
c.Field("Inter").WritePtr(writeType(iface))
|
|
c.Field("Type").WritePtr(writeType(typ))
|
|
c.Field("Hash").WriteUint32(types.TypeHash(typ)) // copy of type hash
|
|
|
|
var delta int64
|
|
c = c.Field("Fun")
|
|
if !completeItab {
|
|
// If typ doesn't implement iface, make method entries be zero.
|
|
c.Elem(0).WriteUintptr(0)
|
|
} else {
|
|
var a rttype.ArrayCursor
|
|
a, delta = c.ModifyArray(len(entries))
|
|
for i, fn := range entries {
|
|
a.Elem(i).WritePtrWeak(fn) // method pointer for each method
|
|
}
|
|
}
|
|
// Nothing writes static itabs, so they are read only.
|
|
objw.Global(lsym, int32(rttype.ITab.Size()+delta), int16(obj.DUPOK|obj.RODATA))
|
|
lsym.Set(obj.AttrContentAddressable, true)
|
|
}
|
|
|
|
func WritePluginTable() {
|
|
ptabs := typecheck.Target.PluginExports
|
|
if len(ptabs) == 0 {
|
|
return
|
|
}
|
|
|
|
lsym := base.Ctxt.Lookup("go:plugin.tabs")
|
|
ot := 0
|
|
for _, p := range ptabs {
|
|
// Dump ptab symbol into go.pluginsym package.
|
|
//
|
|
// type ptab struct {
|
|
// name nameOff
|
|
// typ typeOff // pointer to symbol
|
|
// }
|
|
nsym := dname(p.Sym().Name, "", nil, true, false)
|
|
t := p.Type()
|
|
if p.Class != ir.PFUNC {
|
|
t = types.NewPtr(t)
|
|
}
|
|
tsym := writeType(t)
|
|
ot = objw.SymPtrOff(lsym, ot, nsym)
|
|
ot = objw.SymPtrOff(lsym, ot, tsym)
|
|
// Plugin exports symbols as interfaces. Mark their types
|
|
// as UsedInIface.
|
|
tsym.Set(obj.AttrUsedInIface, true)
|
|
}
|
|
objw.Global(lsym, int32(ot), int16(obj.RODATA))
|
|
|
|
lsym = base.Ctxt.Lookup("go:plugin.exports")
|
|
ot = 0
|
|
for _, p := range ptabs {
|
|
ot = objw.SymPtr(lsym, ot, p.Linksym(), 0)
|
|
}
|
|
objw.Global(lsym, int32(ot), int16(obj.RODATA))
|
|
}
|
|
|
|
// writtenByWriteBasicTypes reports whether typ is written by WriteBasicTypes.
|
|
// WriteBasicTypes always writes pointer types; any pointer has been stripped off typ already.
|
|
func writtenByWriteBasicTypes(typ *types.Type) bool {
|
|
if typ.Sym() == nil && typ.Kind() == types.TFUNC {
|
|
// func(error) string
|
|
if typ.NumRecvs() == 0 &&
|
|
typ.NumParams() == 1 && typ.NumResults() == 1 &&
|
|
typ.Param(0).Type == types.ErrorType &&
|
|
typ.Result(0).Type == types.Types[types.TSTRING] {
|
|
return true
|
|
}
|
|
}
|
|
|
|
// Now we have left the basic types plus any and error, plus slices of them.
|
|
// Strip the slice.
|
|
if typ.Sym() == nil && typ.IsSlice() {
|
|
typ = typ.Elem()
|
|
}
|
|
|
|
// Basic types.
|
|
sym := typ.Sym()
|
|
if sym != nil && (sym.Pkg == types.BuiltinPkg || sym.Pkg == types.UnsafePkg) {
|
|
return true
|
|
}
|
|
// any or error
|
|
return (sym == nil && typ.IsEmptyInterface()) || typ == types.ErrorType
|
|
}
|
|
|
|
func WriteBasicTypes() {
|
|
// do basic types if compiling package runtime.
|
|
// they have to be in at least one package,
|
|
// and runtime is always loaded implicitly,
|
|
// so this is as good as any.
|
|
// another possible choice would be package main,
|
|
// but using runtime means fewer copies in object files.
|
|
// The code here needs to be in sync with writtenByWriteBasicTypes above.
|
|
if base.Ctxt.Pkgpath != "runtime" {
|
|
return
|
|
}
|
|
|
|
// Note: always write NewPtr(t) because NeedEmit's caller strips the pointer.
|
|
var list []*types.Type
|
|
for i := types.Kind(1); i <= types.TBOOL; i++ {
|
|
list = append(list, types.Types[i])
|
|
}
|
|
list = append(list,
|
|
types.Types[types.TSTRING],
|
|
types.Types[types.TUNSAFEPTR],
|
|
types.AnyType,
|
|
types.ErrorType)
|
|
for _, t := range list {
|
|
writeType(types.NewPtr(t))
|
|
writeType(types.NewPtr(types.NewSlice(t)))
|
|
}
|
|
|
|
// emit type for func(error) string,
|
|
// which is the type of an auto-generated wrapper.
|
|
writeType(types.NewPtr(types.NewSignature(nil, []*types.Field{
|
|
types.NewField(base.Pos, nil, types.ErrorType),
|
|
}, []*types.Field{
|
|
types.NewField(base.Pos, nil, types.Types[types.TSTRING]),
|
|
})))
|
|
}
|
|
|
|
type typeAndStr struct {
|
|
t *types.Type
|
|
short string // "short" here means TypeSymName
|
|
regular string
|
|
}
|
|
|
|
func typesStrCmp(a, b typeAndStr) int {
|
|
// put named types before unnamed types
|
|
if a.t.Sym() != nil && b.t.Sym() == nil {
|
|
return -1
|
|
}
|
|
if a.t.Sym() == nil && b.t.Sym() != nil {
|
|
return +1
|
|
}
|
|
|
|
if r := strings.Compare(a.short, b.short); r != 0 {
|
|
return r
|
|
}
|
|
// When the only difference between the types is whether
|
|
// they refer to byte or uint8, such as **byte vs **uint8,
|
|
// the types' NameStrings can be identical.
|
|
// To preserve deterministic sort ordering, sort these by String().
|
|
//
|
|
// TODO(mdempsky): This all seems suspect. Using LinkString would
|
|
// avoid naming collisions, and there shouldn't be a reason to care
|
|
// about "byte" vs "uint8": they share the same runtime type
|
|
// descriptor anyway.
|
|
if r := strings.Compare(a.regular, b.regular); r != 0 {
|
|
return r
|
|
}
|
|
// Identical anonymous interfaces defined in different locations
|
|
// will be equal for the above checks, but different in DWARF output.
|
|
// Sort by source position to ensure deterministic order.
|
|
// See issues 27013 and 30202.
|
|
if a.t.Kind() == types.TINTER && len(a.t.AllMethods()) > 0 {
|
|
if a.t.AllMethods()[0].Pos.Before(b.t.AllMethods()[0].Pos) {
|
|
return -1
|
|
}
|
|
return +1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// GCSym returns a data symbol containing GC information for type t, along
|
|
// with a boolean reporting whether the UseGCProg bit should be set in the
|
|
// type kind, and the ptrdata field to record in the reflect type information.
|
|
// GCSym may be called in concurrent backend, so it does not emit the symbol
|
|
// content.
|
|
func GCSym(t *types.Type) (lsym *obj.LSym, useGCProg bool, ptrdata int64) {
|
|
// Record that we need to emit the GC symbol.
|
|
gcsymmu.Lock()
|
|
if _, ok := gcsymset[t]; !ok {
|
|
gcsymset[t] = struct{}{}
|
|
}
|
|
gcsymmu.Unlock()
|
|
|
|
return dgcsym(t, false)
|
|
}
|
|
|
|
// dgcsym returns a data symbol containing GC information for type t, along
|
|
// with a boolean reporting whether the UseGCProg bit should be set in the
|
|
// type kind, and the ptrdata field to record in the reflect type information.
|
|
// When write is true, it writes the symbol data.
|
|
func dgcsym(t *types.Type, write bool) (lsym *obj.LSym, useGCProg bool, ptrdata int64) {
|
|
ptrdata = types.PtrDataSize(t)
|
|
if ptrdata/int64(types.PtrSize) <= abi.MaxPtrmaskBytes*8 {
|
|
lsym = dgcptrmask(t, write)
|
|
return
|
|
}
|
|
|
|
useGCProg = true
|
|
lsym, ptrdata = dgcprog(t, write)
|
|
return
|
|
}
|
|
|
|
// dgcptrmask emits and returns the symbol containing a pointer mask for type t.
|
|
func dgcptrmask(t *types.Type, write bool) *obj.LSym {
|
|
// Bytes we need for the ptrmask.
|
|
n := (types.PtrDataSize(t)/int64(types.PtrSize) + 7) / 8
|
|
// Runtime wants ptrmasks padded to a multiple of uintptr in size.
|
|
n = (n + int64(types.PtrSize) - 1) &^ (int64(types.PtrSize) - 1)
|
|
ptrmask := make([]byte, n)
|
|
fillptrmask(t, ptrmask)
|
|
p := fmt.Sprintf("runtime.gcbits.%x", ptrmask)
|
|
|
|
lsym := base.Ctxt.Lookup(p)
|
|
if write && !lsym.OnList() {
|
|
for i, x := range ptrmask {
|
|
objw.Uint8(lsym, i, x)
|
|
}
|
|
objw.Global(lsym, int32(len(ptrmask)), obj.DUPOK|obj.RODATA|obj.LOCAL)
|
|
lsym.Set(obj.AttrContentAddressable, true)
|
|
}
|
|
return lsym
|
|
}
|
|
|
|
// fillptrmask fills in ptrmask with 1s corresponding to the
|
|
// word offsets in t that hold pointers.
|
|
// ptrmask is assumed to fit at least types.PtrDataSize(t)/PtrSize bits.
|
|
func fillptrmask(t *types.Type, ptrmask []byte) {
|
|
for i := range ptrmask {
|
|
ptrmask[i] = 0
|
|
}
|
|
if !t.HasPointers() {
|
|
return
|
|
}
|
|
|
|
vec := bitvec.New(8 * int32(len(ptrmask)))
|
|
typebits.Set(t, 0, vec)
|
|
|
|
nptr := types.PtrDataSize(t) / int64(types.PtrSize)
|
|
for i := int64(0); i < nptr; i++ {
|
|
if vec.Get(int32(i)) {
|
|
ptrmask[i/8] |= 1 << (uint(i) % 8)
|
|
}
|
|
}
|
|
}
|
|
|
|
// dgcprog emits and returns the symbol containing a GC program for type t
|
|
// along with the size of the data described by the program (in the range
|
|
// [types.PtrDataSize(t), t.Width]).
|
|
// In practice, the size is types.PtrDataSize(t) except for non-trivial arrays.
|
|
// For non-trivial arrays, the program describes the full t.Width size.
|
|
func dgcprog(t *types.Type, write bool) (*obj.LSym, int64) {
|
|
types.CalcSize(t)
|
|
if t.Size() == types.BADWIDTH {
|
|
base.Fatalf("dgcprog: %v badwidth", t)
|
|
}
|
|
lsym := TypeLinksymPrefix(".gcprog", t)
|
|
var p gcProg
|
|
p.init(lsym, write)
|
|
p.emit(t, 0)
|
|
offset := p.w.BitIndex() * int64(types.PtrSize)
|
|
p.end()
|
|
if ptrdata := types.PtrDataSize(t); offset < ptrdata || offset > t.Size() {
|
|
base.Fatalf("dgcprog: %v: offset=%d but ptrdata=%d size=%d", t, offset, ptrdata, t.Size())
|
|
}
|
|
return lsym, offset
|
|
}
|
|
|
|
type gcProg struct {
|
|
lsym *obj.LSym
|
|
symoff int
|
|
w gcprog.Writer
|
|
write bool
|
|
}
|
|
|
|
func (p *gcProg) init(lsym *obj.LSym, write bool) {
|
|
p.lsym = lsym
|
|
p.write = write && !lsym.OnList()
|
|
p.symoff = 4 // first 4 bytes hold program length
|
|
if !write {
|
|
p.w.Init(func(byte) {})
|
|
return
|
|
}
|
|
p.w.Init(p.writeByte)
|
|
if base.Debug.GCProg > 0 {
|
|
fmt.Fprintf(os.Stderr, "compile: start GCProg for %v\n", lsym)
|
|
p.w.Debug(os.Stderr)
|
|
}
|
|
}
|
|
|
|
func (p *gcProg) writeByte(x byte) {
|
|
p.symoff = objw.Uint8(p.lsym, p.symoff, x)
|
|
}
|
|
|
|
func (p *gcProg) end() {
|
|
p.w.End()
|
|
if !p.write {
|
|
return
|
|
}
|
|
objw.Uint32(p.lsym, 0, uint32(p.symoff-4))
|
|
objw.Global(p.lsym, int32(p.symoff), obj.DUPOK|obj.RODATA|obj.LOCAL)
|
|
p.lsym.Set(obj.AttrContentAddressable, true)
|
|
if base.Debug.GCProg > 0 {
|
|
fmt.Fprintf(os.Stderr, "compile: end GCProg for %v\n", p.lsym)
|
|
}
|
|
}
|
|
|
|
func (p *gcProg) emit(t *types.Type, offset int64) {
|
|
types.CalcSize(t)
|
|
if !t.HasPointers() {
|
|
return
|
|
}
|
|
if t.Size() == int64(types.PtrSize) {
|
|
p.w.Ptr(offset / int64(types.PtrSize))
|
|
return
|
|
}
|
|
switch t.Kind() {
|
|
default:
|
|
base.Fatalf("gcProg.emit: unexpected type %v", t)
|
|
|
|
case types.TSTRING:
|
|
p.w.Ptr(offset / int64(types.PtrSize))
|
|
|
|
case types.TINTER:
|
|
// Note: the first word isn't a pointer. See comment in typebits.Set
|
|
p.w.Ptr(offset/int64(types.PtrSize) + 1)
|
|
|
|
case types.TSLICE:
|
|
p.w.Ptr(offset / int64(types.PtrSize))
|
|
|
|
case types.TARRAY:
|
|
if t.NumElem() == 0 {
|
|
// should have been handled by haspointers check above
|
|
base.Fatalf("gcProg.emit: empty array")
|
|
}
|
|
|
|
// Flatten array-of-array-of-array to just a big array by multiplying counts.
|
|
count := t.NumElem()
|
|
elem := t.Elem()
|
|
for elem.IsArray() {
|
|
count *= elem.NumElem()
|
|
elem = elem.Elem()
|
|
}
|
|
|
|
if !p.w.ShouldRepeat(elem.Size()/int64(types.PtrSize), count) {
|
|
// Cheaper to just emit the bits.
|
|
for i := int64(0); i < count; i++ {
|
|
p.emit(elem, offset+i*elem.Size())
|
|
}
|
|
return
|
|
}
|
|
p.emit(elem, offset)
|
|
p.w.ZeroUntil((offset + elem.Size()) / int64(types.PtrSize))
|
|
p.w.Repeat(elem.Size()/int64(types.PtrSize), count-1)
|
|
|
|
case types.TSTRUCT:
|
|
for _, t1 := range t.Fields() {
|
|
p.emit(t1.Type, offset+t1.Offset)
|
|
}
|
|
}
|
|
}
|
|
|
|
// ZeroAddr returns the address of a symbol with at least
|
|
// size bytes of zeros.
|
|
func ZeroAddr(size int64) ir.Node {
|
|
if size >= 1<<31 {
|
|
base.Fatalf("map elem too big %d", size)
|
|
}
|
|
if ZeroSize < size {
|
|
ZeroSize = size
|
|
}
|
|
lsym := base.PkgLinksym("go:map", "zero", obj.ABI0)
|
|
x := ir.NewLinksymExpr(base.Pos, lsym, types.Types[types.TUINT8])
|
|
return typecheck.Expr(typecheck.NodAddr(x))
|
|
}
|
|
|
|
// NeedEmit reports whether typ is a type that we need to emit code
|
|
// for (e.g., runtime type descriptors, method wrappers).
|
|
func NeedEmit(typ *types.Type) bool {
|
|
// TODO(mdempsky): Export data should keep track of which anonymous
|
|
// and instantiated types were emitted, so at least downstream
|
|
// packages can skip re-emitting them.
|
|
//
|
|
// Perhaps we can just generalize the linker-symbol indexing to
|
|
// track the index of arbitrary types, not just defined types, and
|
|
// use its presence to detect this. The same idea would work for
|
|
// instantiated generic functions too.
|
|
|
|
switch sym := typ.Sym(); {
|
|
case writtenByWriteBasicTypes(typ):
|
|
return base.Ctxt.Pkgpath == "runtime"
|
|
|
|
case sym == nil:
|
|
// Anonymous type; possibly never seen before or ever again.
|
|
// Need to emit to be safe (however, see TODO above).
|
|
return true
|
|
|
|
case sym.Pkg == types.LocalPkg:
|
|
// Local defined type; our responsibility.
|
|
return true
|
|
|
|
case typ.IsFullyInstantiated():
|
|
// Instantiated type; possibly instantiated with unique type arguments.
|
|
// Need to emit to be safe (however, see TODO above).
|
|
return true
|
|
|
|
case typ.HasShape():
|
|
// Shape type; need to emit even though it lives in the .shape package.
|
|
// TODO: make sure the linker deduplicates them (see dupok in writeType above).
|
|
return true
|
|
|
|
default:
|
|
// Should have been emitted by an imported package.
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Generate a wrapper function to convert from
|
|
// a receiver of type T to a receiver of type U.
|
|
// That is,
|
|
//
|
|
// func (t T) M() {
|
|
// ...
|
|
// }
|
|
//
|
|
// already exists; this function generates
|
|
//
|
|
// func (u U) M() {
|
|
// u.M()
|
|
// }
|
|
//
|
|
// where the types T and U are such that u.M() is valid
|
|
// and calls the T.M method.
|
|
// The resulting function is for use in method tables.
|
|
//
|
|
// rcvr - U
|
|
// method - M func (t T)(), a TFIELD type struct
|
|
//
|
|
// Also wraps methods on instantiated generic types for use in itab entries.
|
|
// For an instantiated generic type G[int], we generate wrappers like:
|
|
// G[int] pointer shaped:
|
|
//
|
|
// func (x G[int]) f(arg) {
|
|
// .inst.G[int].f(dictionary, x, arg)
|
|
// }
|
|
//
|
|
// G[int] not pointer shaped:
|
|
//
|
|
// func (x *G[int]) f(arg) {
|
|
// .inst.G[int].f(dictionary, *x, arg)
|
|
// }
|
|
//
|
|
// These wrappers are always fully stenciled.
|
|
func methodWrapper(rcvr *types.Type, method *types.Field, forItab bool) *obj.LSym {
|
|
if forItab && !types.IsDirectIface(rcvr) {
|
|
rcvr = rcvr.PtrTo()
|
|
}
|
|
|
|
newnam := ir.MethodSym(rcvr, method.Sym)
|
|
lsym := newnam.Linksym()
|
|
|
|
// Unified IR creates its own wrappers.
|
|
return lsym
|
|
}
|
|
|
|
var ZeroSize int64
|
|
|
|
// MarkTypeUsedInInterface marks that type t is converted to an interface.
|
|
// This information is used in the linker in dead method elimination.
|
|
func MarkTypeUsedInInterface(t *types.Type, from *obj.LSym) {
|
|
if t.HasShape() {
|
|
// Shape types shouldn't be put in interfaces, so we shouldn't ever get here.
|
|
base.Fatalf("shape types have no methods %+v", t)
|
|
}
|
|
MarkTypeSymUsedInInterface(TypeLinksym(t), from)
|
|
}
|
|
func MarkTypeSymUsedInInterface(tsym *obj.LSym, from *obj.LSym) {
|
|
// Emit a marker relocation. The linker will know the type is converted
|
|
// to an interface if "from" is reachable.
|
|
r := obj.Addrel(from)
|
|
r.Sym = tsym
|
|
r.Type = objabi.R_USEIFACE
|
|
}
|
|
|
|
// MarkUsedIfaceMethod marks that an interface method is used in the current
|
|
// function. n is OCALLINTER node.
|
|
func MarkUsedIfaceMethod(n *ir.CallExpr) {
|
|
// skip unnamed functions (func _())
|
|
if ir.CurFunc.LSym == nil {
|
|
return
|
|
}
|
|
dot := n.Fun.(*ir.SelectorExpr)
|
|
ityp := dot.X.Type()
|
|
if ityp.HasShape() {
|
|
// Here we're calling a method on a generic interface. Something like:
|
|
//
|
|
// type I[T any] interface { foo() T }
|
|
// func f[T any](x I[T]) {
|
|
// ... = x.foo()
|
|
// }
|
|
// f[int](...)
|
|
// f[string](...)
|
|
//
|
|
// In this case, in f we're calling foo on a generic interface.
|
|
// Which method could that be? Normally we could match the method
|
|
// both by name and by type. But in this case we don't really know
|
|
// the type of the method we're calling. It could be func()int
|
|
// or func()string. So we match on just the function name, instead
|
|
// of both the name and the type used for the non-generic case below.
|
|
// TODO: instantiations at least know the shape of the instantiated
|
|
// type, and the linker could do more complicated matching using
|
|
// some sort of fuzzy shape matching. For now, only use the name
|
|
// of the method for matching.
|
|
r := obj.Addrel(ir.CurFunc.LSym)
|
|
r.Sym = staticdata.StringSymNoCommon(dot.Sel.Name)
|
|
r.Type = objabi.R_USENAMEDMETHOD
|
|
return
|
|
}
|
|
|
|
tsym := TypeLinksym(ityp)
|
|
r := obj.Addrel(ir.CurFunc.LSym)
|
|
r.Sym = tsym
|
|
// dot.Offset() is the method index * PtrSize (the offset of code pointer
|
|
// in itab).
|
|
midx := dot.Offset() / int64(types.PtrSize)
|
|
r.Add = InterfaceMethodOffset(ityp, midx)
|
|
r.Type = objabi.R_USEIFACEMETHOD
|
|
}
|
|
|
|
func deref(t *types.Type) *types.Type {
|
|
if t.IsPtr() {
|
|
return t.Elem()
|
|
}
|
|
return t
|
|
}
|