mirror of https://github.com/golang/go.git
524 lines
18 KiB
Go
524 lines
18 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package walk
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"go/constant"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/reflectdata"
|
|
"cmd/compile/internal/ssagen"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/sys"
|
|
)
|
|
|
|
// walkConv walks an OCONV or OCONVNOP (but not OCONVIFACE) node.
|
|
func walkConv(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
n.X = walkExpr(n.X, init)
|
|
if n.Op() == ir.OCONVNOP && n.Type() == n.X.Type() {
|
|
return n.X
|
|
}
|
|
if n.Op() == ir.OCONVNOP && ir.ShouldCheckPtr(ir.CurFunc, 1) {
|
|
if n.Type().IsUnsafePtr() && n.X.Type().IsUintptr() { // uintptr to unsafe.Pointer
|
|
return walkCheckPtrArithmetic(n, init)
|
|
}
|
|
}
|
|
param, result := rtconvfn(n.X.Type(), n.Type())
|
|
if param == types.Txxx {
|
|
return n
|
|
}
|
|
fn := types.BasicTypeNames[param] + "to" + types.BasicTypeNames[result]
|
|
return typecheck.Conv(mkcall(fn, types.Types[result], init, typecheck.Conv(n.X, types.Types[param])), n.Type())
|
|
}
|
|
|
|
// walkConvInterface walks an OCONVIFACE node.
|
|
func walkConvInterface(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
|
|
n.X = walkExpr(n.X, init)
|
|
|
|
fromType := n.X.Type()
|
|
toType := n.Type()
|
|
if !fromType.IsInterface() && !ir.IsBlank(ir.CurFunc.Nname) {
|
|
// skip unnamed functions (func _())
|
|
if base.Debug.Unified != 0 && fromType.HasShape() {
|
|
// Unified IR uses OCONVIFACE for converting all derived types
|
|
// to interface type. Avoid assertion failure in
|
|
// MarkTypeUsedInInterface, because we've marked used types
|
|
// separately anyway.
|
|
} else {
|
|
reflectdata.MarkTypeUsedInInterface(fromType, ir.CurFunc.LSym)
|
|
}
|
|
}
|
|
|
|
if !fromType.IsInterface() {
|
|
typeWord := reflectdata.ConvIfaceTypeWord(base.Pos, n)
|
|
l := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeWord, dataWord(n, init))
|
|
l.SetType(toType)
|
|
l.SetTypecheck(n.Typecheck())
|
|
return l
|
|
}
|
|
if fromType.IsEmptyInterface() {
|
|
base.Fatalf("OCONVIFACE can't operate on an empty interface")
|
|
}
|
|
|
|
// Evaluate the input interface.
|
|
c := typecheck.Temp(fromType)
|
|
init.Append(ir.NewAssignStmt(base.Pos, c, n.X))
|
|
|
|
// Grab its parts.
|
|
itab := ir.NewUnaryExpr(base.Pos, ir.OITAB, c)
|
|
itab.SetType(types.Types[types.TUINTPTR].PtrTo())
|
|
itab.SetTypecheck(1)
|
|
data := ir.NewUnaryExpr(n.Pos(), ir.OIDATA, c)
|
|
data.SetType(types.Types[types.TUINT8].PtrTo()) // Type is generic pointer - we're just passing it through.
|
|
data.SetTypecheck(1)
|
|
|
|
var typeWord ir.Node
|
|
if toType.IsEmptyInterface() {
|
|
// Implement interface to empty interface conversion.
|
|
// res = itab
|
|
// if res != nil {
|
|
// res = res.type
|
|
// }
|
|
typeWord = typecheck.Temp(types.NewPtr(types.Types[types.TUINT8]))
|
|
init.Append(ir.NewAssignStmt(base.Pos, typeWord, itab))
|
|
nif := ir.NewIfStmt(base.Pos, typecheck.Expr(ir.NewBinaryExpr(base.Pos, ir.ONE, typeWord, typecheck.NodNil())), nil, nil)
|
|
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, typeWord, itabType(typeWord))}
|
|
init.Append(nif)
|
|
} else {
|
|
// Must be converting I2I (more specific to less specific interface).
|
|
// res = convI2I(toType, itab)
|
|
fn := typecheck.LookupRuntime("convI2I")
|
|
types.CalcSize(fn.Type())
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
|
|
call.Args = []ir.Node{reflectdata.ConvIfaceTypeWord(base.Pos, n), itab}
|
|
typeWord = walkExpr(typecheck.Expr(call), init)
|
|
}
|
|
|
|
// Build the result.
|
|
// e = iface{typeWord, data}
|
|
e := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeWord, data)
|
|
e.SetType(toType) // assign type manually, typecheck doesn't understand OEFACE.
|
|
e.SetTypecheck(1)
|
|
return e
|
|
}
|
|
|
|
// Returns the data word (the second word) used to represent conv.X in
|
|
// an interface.
|
|
func dataWord(conv *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
pos, n := conv.Pos(), conv.X
|
|
fromType := n.Type()
|
|
|
|
// If it's a pointer, it is its own representation.
|
|
if types.IsDirectIface(fromType) {
|
|
return n
|
|
}
|
|
|
|
isInteger := fromType.IsInteger()
|
|
isBool := fromType.IsBoolean()
|
|
if sc := fromType.SoleComponent(); sc != nil {
|
|
isInteger = sc.IsInteger()
|
|
isBool = sc.IsBoolean()
|
|
}
|
|
// Try a bunch of cases to avoid an allocation.
|
|
var value ir.Node
|
|
switch {
|
|
case fromType.Size() == 0:
|
|
// n is zero-sized. Use zerobase.
|
|
cheapExpr(n, init) // Evaluate n for side-effects. See issue 19246.
|
|
value = ir.NewLinksymExpr(base.Pos, ir.Syms.Zerobase, types.Types[types.TUINTPTR])
|
|
case isBool || fromType.Size() == 1 && isInteger:
|
|
// n is a bool/byte. Use staticuint64s[n * 8] on little-endian
|
|
// and staticuint64s[n * 8 + 7] on big-endian.
|
|
n = cheapExpr(n, init)
|
|
n = soleComponent(init, n)
|
|
// byteindex widens n so that the multiplication doesn't overflow.
|
|
index := ir.NewBinaryExpr(base.Pos, ir.OLSH, byteindex(n), ir.NewInt(3))
|
|
if ssagen.Arch.LinkArch.ByteOrder == binary.BigEndian {
|
|
index = ir.NewBinaryExpr(base.Pos, ir.OADD, index, ir.NewInt(7))
|
|
}
|
|
// The actual type is [256]uint64, but we use [256*8]uint8 so we can address
|
|
// individual bytes.
|
|
staticuint64s := ir.NewLinksymExpr(base.Pos, ir.Syms.Staticuint64s, types.NewArray(types.Types[types.TUINT8], 256*8))
|
|
xe := ir.NewIndexExpr(base.Pos, staticuint64s, index)
|
|
xe.SetBounded(true)
|
|
value = xe
|
|
case n.Op() == ir.ONAME && n.(*ir.Name).Class == ir.PEXTERN && n.(*ir.Name).Readonly():
|
|
// n is a readonly global; use it directly.
|
|
value = n
|
|
case conv.Esc() == ir.EscNone && fromType.Size() <= 1024:
|
|
// n does not escape. Use a stack temporary initialized to n.
|
|
value = typecheck.Temp(fromType)
|
|
init.Append(typecheck.Stmt(ir.NewAssignStmt(base.Pos, value, n)))
|
|
}
|
|
if value != nil {
|
|
// The interface data word is &value.
|
|
return typecheck.Expr(typecheck.NodAddr(value))
|
|
}
|
|
|
|
// Time to do an allocation. We'll call into the runtime for that.
|
|
fnname, argType, needsaddr := dataWordFuncName(fromType)
|
|
fn := typecheck.LookupRuntime(fnname)
|
|
|
|
var args []ir.Node
|
|
if needsaddr {
|
|
// Types of large or unknown size are passed by reference.
|
|
// Orderexpr arranged for n to be a temporary for all
|
|
// the conversions it could see. Comparison of an interface
|
|
// with a non-interface, especially in a switch on interface value
|
|
// with non-interface cases, is not visible to order.stmt, so we
|
|
// have to fall back on allocating a temp here.
|
|
if !ir.IsAddressable(n) {
|
|
n = copyExpr(n, fromType, init)
|
|
}
|
|
fn = typecheck.SubstArgTypes(fn, fromType)
|
|
args = []ir.Node{reflectdata.ConvIfaceSrcRType(base.Pos, conv), typecheck.NodAddr(n)}
|
|
} else {
|
|
// Use a specialized conversion routine that takes the type being
|
|
// converted by value, not by pointer.
|
|
var arg ir.Node
|
|
switch {
|
|
case fromType == argType:
|
|
// already in the right type, nothing to do
|
|
arg = n
|
|
case fromType.Kind() == argType.Kind(),
|
|
fromType.IsPtrShaped() && argType.IsPtrShaped():
|
|
// can directly convert (e.g. named type to underlying type, or one pointer to another)
|
|
// TODO: never happens because pointers are directIface?
|
|
arg = ir.NewConvExpr(pos, ir.OCONVNOP, argType, n)
|
|
case fromType.IsInteger() && argType.IsInteger():
|
|
// can directly convert (e.g. int32 to uint32)
|
|
arg = ir.NewConvExpr(pos, ir.OCONV, argType, n)
|
|
default:
|
|
// unsafe cast through memory
|
|
arg = copyExpr(n, fromType, init)
|
|
var addr ir.Node = typecheck.NodAddr(arg)
|
|
addr = ir.NewConvExpr(pos, ir.OCONVNOP, argType.PtrTo(), addr)
|
|
arg = ir.NewStarExpr(pos, addr)
|
|
arg.SetType(argType)
|
|
}
|
|
args = []ir.Node{arg}
|
|
}
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
|
|
call.Args = args
|
|
return safeExpr(walkExpr(typecheck.Expr(call), init), init)
|
|
}
|
|
|
|
// walkConvIData walks an OCONVIDATA node.
|
|
func walkConvIData(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
n.X = walkExpr(n.X, init)
|
|
return dataWord(n, init)
|
|
}
|
|
|
|
// walkBytesRunesToString walks an OBYTES2STR or ORUNES2STR node.
|
|
func walkBytesRunesToString(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
a := typecheck.NodNil()
|
|
if n.Esc() == ir.EscNone {
|
|
// Create temporary buffer for string on stack.
|
|
a = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8])
|
|
}
|
|
if n.Op() == ir.ORUNES2STR {
|
|
// slicerunetostring(*[32]byte, []rune) string
|
|
return mkcall("slicerunetostring", n.Type(), init, a, n.X)
|
|
}
|
|
// slicebytetostring(*[32]byte, ptr *byte, n int) string
|
|
n.X = cheapExpr(n.X, init)
|
|
ptr, len := backingArrayPtrLen(n.X)
|
|
return mkcall("slicebytetostring", n.Type(), init, a, ptr, len)
|
|
}
|
|
|
|
// walkBytesToStringTemp walks an OBYTES2STRTMP node.
|
|
func walkBytesToStringTemp(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
n.X = walkExpr(n.X, init)
|
|
if !base.Flag.Cfg.Instrumenting {
|
|
// Let the backend handle OBYTES2STRTMP directly
|
|
// to avoid a function call to slicebytetostringtmp.
|
|
return n
|
|
}
|
|
// slicebytetostringtmp(ptr *byte, n int) string
|
|
n.X = cheapExpr(n.X, init)
|
|
ptr, len := backingArrayPtrLen(n.X)
|
|
return mkcall("slicebytetostringtmp", n.Type(), init, ptr, len)
|
|
}
|
|
|
|
// walkRuneToString walks an ORUNESTR node.
|
|
func walkRuneToString(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
a := typecheck.NodNil()
|
|
if n.Esc() == ir.EscNone {
|
|
a = stackBufAddr(4, types.Types[types.TUINT8])
|
|
}
|
|
// intstring(*[4]byte, rune)
|
|
return mkcall("intstring", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TINT64]))
|
|
}
|
|
|
|
// walkStringToBytes walks an OSTR2BYTES node.
|
|
func walkStringToBytes(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
s := n.X
|
|
if ir.IsConst(s, constant.String) {
|
|
sc := ir.StringVal(s)
|
|
|
|
// Allocate a [n]byte of the right size.
|
|
t := types.NewArray(types.Types[types.TUINT8], int64(len(sc)))
|
|
var a ir.Node
|
|
if n.Esc() == ir.EscNone && len(sc) <= int(ir.MaxImplicitStackVarSize) {
|
|
a = stackBufAddr(t.NumElem(), t.Elem())
|
|
} else {
|
|
types.CalcSize(t)
|
|
a = ir.NewUnaryExpr(base.Pos, ir.ONEW, nil)
|
|
a.SetType(types.NewPtr(t))
|
|
a.SetTypecheck(1)
|
|
a.MarkNonNil()
|
|
}
|
|
p := typecheck.Temp(t.PtrTo()) // *[n]byte
|
|
init.Append(typecheck.Stmt(ir.NewAssignStmt(base.Pos, p, a)))
|
|
|
|
// Copy from the static string data to the [n]byte.
|
|
if len(sc) > 0 {
|
|
as := ir.NewAssignStmt(base.Pos, ir.NewStarExpr(base.Pos, p), ir.NewStarExpr(base.Pos, typecheck.ConvNop(ir.NewUnaryExpr(base.Pos, ir.OSPTR, s), t.PtrTo())))
|
|
appendWalkStmt(init, as)
|
|
}
|
|
|
|
// Slice the [n]byte to a []byte.
|
|
slice := ir.NewSliceExpr(n.Pos(), ir.OSLICEARR, p, nil, nil, nil)
|
|
slice.SetType(n.Type())
|
|
slice.SetTypecheck(1)
|
|
return walkExpr(slice, init)
|
|
}
|
|
|
|
a := typecheck.NodNil()
|
|
if n.Esc() == ir.EscNone {
|
|
// Create temporary buffer for slice on stack.
|
|
a = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8])
|
|
}
|
|
// stringtoslicebyte(*32[byte], string) []byte
|
|
return mkcall("stringtoslicebyte", n.Type(), init, a, typecheck.Conv(s, types.Types[types.TSTRING]))
|
|
}
|
|
|
|
// walkStringToBytesTemp walks an OSTR2BYTESTMP node.
|
|
func walkStringToBytesTemp(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
// []byte(string) conversion that creates a slice
|
|
// referring to the actual string bytes.
|
|
// This conversion is handled later by the backend and
|
|
// is only for use by internal compiler optimizations
|
|
// that know that the slice won't be mutated.
|
|
// The only such case today is:
|
|
// for i, c := range []byte(string)
|
|
n.X = walkExpr(n.X, init)
|
|
return n
|
|
}
|
|
|
|
// walkStringToRunes walks an OSTR2RUNES node.
|
|
func walkStringToRunes(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
a := typecheck.NodNil()
|
|
if n.Esc() == ir.EscNone {
|
|
// Create temporary buffer for slice on stack.
|
|
a = stackBufAddr(tmpstringbufsize, types.Types[types.TINT32])
|
|
}
|
|
// stringtoslicerune(*[32]rune, string) []rune
|
|
return mkcall("stringtoslicerune", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TSTRING]))
|
|
}
|
|
|
|
// dataWordFuncName returns the name of the function used to convert a value of type "from"
|
|
// to the data word of an interface.
|
|
// argType is the type the argument needs to be coerced to.
|
|
// needsaddr reports whether the value should be passed (needaddr==false) or its address (needsaddr==true).
|
|
func dataWordFuncName(from *types.Type) (fnname string, argType *types.Type, needsaddr bool) {
|
|
if from.IsInterface() {
|
|
base.Fatalf("can only handle non-interfaces")
|
|
}
|
|
switch {
|
|
case from.Size() == 2 && uint8(from.Alignment()) == 2:
|
|
return "convT16", types.Types[types.TUINT16], false
|
|
case from.Size() == 4 && uint8(from.Alignment()) == 4 && !from.HasPointers():
|
|
return "convT32", types.Types[types.TUINT32], false
|
|
case from.Size() == 8 && uint8(from.Alignment()) == uint8(types.Types[types.TUINT64].Alignment()) && !from.HasPointers():
|
|
return "convT64", types.Types[types.TUINT64], false
|
|
}
|
|
if sc := from.SoleComponent(); sc != nil {
|
|
switch {
|
|
case sc.IsString():
|
|
return "convTstring", types.Types[types.TSTRING], false
|
|
case sc.IsSlice():
|
|
return "convTslice", types.NewSlice(types.Types[types.TUINT8]), false // the element type doesn't matter
|
|
}
|
|
}
|
|
|
|
if from.HasPointers() {
|
|
return "convT", types.Types[types.TUNSAFEPTR], true
|
|
}
|
|
return "convTnoptr", types.Types[types.TUNSAFEPTR], true
|
|
}
|
|
|
|
// rtconvfn returns the parameter and result types that will be used by a
|
|
// runtime function to convert from type src to type dst. The runtime function
|
|
// name can be derived from the names of the returned types.
|
|
//
|
|
// If no such function is necessary, it returns (Txxx, Txxx).
|
|
func rtconvfn(src, dst *types.Type) (param, result types.Kind) {
|
|
if ssagen.Arch.SoftFloat {
|
|
return types.Txxx, types.Txxx
|
|
}
|
|
|
|
switch ssagen.Arch.LinkArch.Family {
|
|
case sys.ARM, sys.MIPS:
|
|
if src.IsFloat() {
|
|
switch dst.Kind() {
|
|
case types.TINT64, types.TUINT64:
|
|
return types.TFLOAT64, dst.Kind()
|
|
}
|
|
}
|
|
if dst.IsFloat() {
|
|
switch src.Kind() {
|
|
case types.TINT64, types.TUINT64:
|
|
return src.Kind(), dst.Kind()
|
|
}
|
|
}
|
|
|
|
case sys.I386:
|
|
if src.IsFloat() {
|
|
switch dst.Kind() {
|
|
case types.TINT64, types.TUINT64:
|
|
return types.TFLOAT64, dst.Kind()
|
|
case types.TUINT32, types.TUINT, types.TUINTPTR:
|
|
return types.TFLOAT64, types.TUINT32
|
|
}
|
|
}
|
|
if dst.IsFloat() {
|
|
switch src.Kind() {
|
|
case types.TINT64, types.TUINT64:
|
|
return src.Kind(), dst.Kind()
|
|
case types.TUINT32, types.TUINT, types.TUINTPTR:
|
|
return types.TUINT32, types.TFLOAT64
|
|
}
|
|
}
|
|
}
|
|
return types.Txxx, types.Txxx
|
|
}
|
|
|
|
func soleComponent(init *ir.Nodes, n ir.Node) ir.Node {
|
|
if n.Type().SoleComponent() == nil {
|
|
return n
|
|
}
|
|
// Keep in sync with cmd/compile/internal/types/type.go:Type.SoleComponent.
|
|
for {
|
|
switch {
|
|
case n.Type().IsStruct():
|
|
if n.Type().Field(0).Sym.IsBlank() {
|
|
// Treat blank fields as the zero value as the Go language requires.
|
|
n = typecheck.Temp(n.Type().Field(0).Type)
|
|
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, n, nil))
|
|
continue
|
|
}
|
|
n = typecheck.Expr(ir.NewSelectorExpr(n.Pos(), ir.OXDOT, n, n.Type().Field(0).Sym))
|
|
case n.Type().IsArray():
|
|
n = typecheck.Expr(ir.NewIndexExpr(n.Pos(), n, ir.NewInt(0)))
|
|
default:
|
|
return n
|
|
}
|
|
}
|
|
}
|
|
|
|
// byteindex converts n, which is byte-sized, to an int used to index into an array.
|
|
// We cannot use conv, because we allow converting bool to int here,
|
|
// which is forbidden in user code.
|
|
func byteindex(n ir.Node) ir.Node {
|
|
// We cannot convert from bool to int directly.
|
|
// While converting from int8 to int is possible, it would yield
|
|
// the wrong result for negative values.
|
|
// Reinterpreting the value as an unsigned byte solves both cases.
|
|
if !types.Identical(n.Type(), types.Types[types.TUINT8]) {
|
|
n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
|
|
n.SetType(types.Types[types.TUINT8])
|
|
n.SetTypecheck(1)
|
|
}
|
|
n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
|
|
n.SetType(types.Types[types.TINT])
|
|
n.SetTypecheck(1)
|
|
return n
|
|
}
|
|
|
|
func walkCheckPtrArithmetic(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
// Calling cheapExpr(n, init) below leads to a recursive call to
|
|
// walkExpr, which leads us back here again. Use n.Checkptr to
|
|
// prevent infinite loops.
|
|
if n.CheckPtr() {
|
|
return n
|
|
}
|
|
n.SetCheckPtr(true)
|
|
defer n.SetCheckPtr(false)
|
|
|
|
// TODO(mdempsky): Make stricter. We only need to exempt
|
|
// reflect.Value.Pointer and reflect.Value.UnsafeAddr.
|
|
switch n.X.Op() {
|
|
case ir.OCALLMETH:
|
|
base.FatalfAt(n.X.Pos(), "OCALLMETH missed by typecheck")
|
|
case ir.OCALLFUNC, ir.OCALLINTER:
|
|
return n
|
|
}
|
|
|
|
if n.X.Op() == ir.ODOTPTR && ir.IsReflectHeaderDataField(n.X) {
|
|
return n
|
|
}
|
|
|
|
// Find original unsafe.Pointer operands involved in this
|
|
// arithmetic expression.
|
|
//
|
|
// "It is valid both to add and to subtract offsets from a
|
|
// pointer in this way. It is also valid to use &^ to round
|
|
// pointers, usually for alignment."
|
|
var originals []ir.Node
|
|
var walk func(n ir.Node)
|
|
walk = func(n ir.Node) {
|
|
switch n.Op() {
|
|
case ir.OADD:
|
|
n := n.(*ir.BinaryExpr)
|
|
walk(n.X)
|
|
walk(n.Y)
|
|
case ir.OSUB, ir.OANDNOT:
|
|
n := n.(*ir.BinaryExpr)
|
|
walk(n.X)
|
|
case ir.OCONVNOP:
|
|
n := n.(*ir.ConvExpr)
|
|
if n.X.Type().IsUnsafePtr() {
|
|
n.X = cheapExpr(n.X, init)
|
|
originals = append(originals, typecheck.ConvNop(n.X, types.Types[types.TUNSAFEPTR]))
|
|
}
|
|
}
|
|
}
|
|
walk(n.X)
|
|
|
|
cheap := cheapExpr(n, init)
|
|
|
|
slice := typecheck.MakeDotArgs(base.Pos, types.NewSlice(types.Types[types.TUNSAFEPTR]), originals)
|
|
slice.SetEsc(ir.EscNone)
|
|
|
|
init.Append(mkcall("checkptrArithmetic", nil, init, typecheck.ConvNop(cheap, types.Types[types.TUNSAFEPTR]), slice))
|
|
// TODO(khr): Mark backing store of slice as dead. This will allow us to reuse
|
|
// the backing store for multiple calls to checkptrArithmetic.
|
|
|
|
return cheap
|
|
}
|
|
|
|
// walkSliceToArray walks an OSLICE2ARR expression.
|
|
func walkSliceToArray(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
|
|
// Replace T(x) with *(*T)(x).
|
|
conv := typecheck.Expr(ir.NewConvExpr(base.Pos, ir.OCONV, types.NewPtr(n.Type()), n.X)).(*ir.ConvExpr)
|
|
deref := typecheck.Expr(ir.NewStarExpr(base.Pos, conv)).(*ir.StarExpr)
|
|
|
|
// The OSLICE2ARRPTR conversion handles checking the slice length,
|
|
// so the dereference can't fail.
|
|
//
|
|
// However, this is more than just an optimization: if T is a
|
|
// zero-length array, then x (and thus (*T)(x)) can be nil, but T(x)
|
|
// should *not* panic. So suppressing the nil check here is
|
|
// necessary for correctness in that case.
|
|
deref.SetBounded(true)
|
|
|
|
return walkExpr(deref, init)
|
|
}
|