go/src/cmd/compile/internal/gc/gsubr.go

465 lines
14 KiB
Go

// Derived from Inferno utils/6c/txt.c
// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6c/txt.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package gc
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/ssa"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
"fmt"
"os"
)
var sharedProgArray = new([10000]obj.Prog) // *T instead of T to work around issue 19839
// Progs accumulates Progs for a function and converts them into machine code.
type Progs struct {
Text *obj.Prog // ATEXT Prog for this function
next *obj.Prog // next Prog
pc int64 // virtual PC; count of Progs
pos src.XPos // position to use for new Progs
curfn *ir.Func // fn these Progs are for
progcache []obj.Prog // local progcache
cacheidx int // first free element of progcache
nextLive LivenessIndex // liveness index for the next Prog
prevLive LivenessIndex // last emitted liveness index
}
// newProgs returns a new Progs for fn.
// worker indicates which of the backend workers will use the Progs.
func newProgs(fn *ir.Func, worker int) *Progs {
pp := new(Progs)
if base.Ctxt.CanReuseProgs() {
sz := len(sharedProgArray) / base.Flag.LowerC
pp.progcache = sharedProgArray[sz*worker : sz*(worker+1)]
}
pp.curfn = fn
// prime the pump
pp.next = pp.NewProg()
pp.clearp(pp.next)
pp.pos = fn.Pos()
pp.settext(fn)
// PCDATA tables implicitly start with index -1.
pp.prevLive = LivenessIndex{-1, false}
pp.nextLive = pp.prevLive
return pp
}
func (pp *Progs) NewProg() *obj.Prog {
var p *obj.Prog
if pp.cacheidx < len(pp.progcache) {
p = &pp.progcache[pp.cacheidx]
pp.cacheidx++
} else {
p = new(obj.Prog)
}
p.Ctxt = base.Ctxt
return p
}
// Flush converts from pp to machine code.
func (pp *Progs) Flush() {
plist := &obj.Plist{Firstpc: pp.Text, Curfn: pp.curfn}
obj.Flushplist(base.Ctxt, plist, pp.NewProg, base.Ctxt.Pkgpath)
}
// Free clears pp and any associated resources.
func (pp *Progs) Free() {
if base.Ctxt.CanReuseProgs() {
// Clear progs to enable GC and avoid abuse.
s := pp.progcache[:pp.cacheidx]
for i := range s {
s[i] = obj.Prog{}
}
}
// Clear pp to avoid abuse.
*pp = Progs{}
}
// Prog adds a Prog with instruction As to pp.
func (pp *Progs) Prog(as obj.As) *obj.Prog {
if pp.nextLive.StackMapValid() && pp.nextLive.stackMapIndex != pp.prevLive.stackMapIndex {
// Emit stack map index change.
idx := pp.nextLive.stackMapIndex
pp.prevLive.stackMapIndex = idx
p := pp.Prog(obj.APCDATA)
Addrconst(&p.From, objabi.PCDATA_StackMapIndex)
Addrconst(&p.To, int64(idx))
}
if pp.nextLive.isUnsafePoint != pp.prevLive.isUnsafePoint {
// Emit unsafe-point marker.
pp.prevLive.isUnsafePoint = pp.nextLive.isUnsafePoint
p := pp.Prog(obj.APCDATA)
Addrconst(&p.From, objabi.PCDATA_UnsafePoint)
if pp.nextLive.isUnsafePoint {
Addrconst(&p.To, objabi.PCDATA_UnsafePointUnsafe)
} else {
Addrconst(&p.To, objabi.PCDATA_UnsafePointSafe)
}
}
p := pp.next
pp.next = pp.NewProg()
pp.clearp(pp.next)
p.Link = pp.next
if !pp.pos.IsKnown() && base.Flag.K != 0 {
base.Warn("prog: unknown position (line 0)")
}
p.As = as
p.Pos = pp.pos
if pp.pos.IsStmt() == src.PosIsStmt {
// Clear IsStmt for later Progs at this pos provided that as can be marked as a stmt
if ssa.LosesStmtMark(as) {
return p
}
pp.pos = pp.pos.WithNotStmt()
}
return p
}
func (pp *Progs) clearp(p *obj.Prog) {
obj.Nopout(p)
p.As = obj.AEND
p.Pc = pp.pc
pp.pc++
}
func (pp *Progs) Appendpp(p *obj.Prog, as obj.As, ftype obj.AddrType, freg int16, foffset int64, ttype obj.AddrType, treg int16, toffset int64) *obj.Prog {
q := pp.NewProg()
pp.clearp(q)
q.As = as
q.Pos = p.Pos
q.From.Type = ftype
q.From.Reg = freg
q.From.Offset = foffset
q.To.Type = ttype
q.To.Reg = treg
q.To.Offset = toffset
q.Link = p.Link
p.Link = q
return q
}
func (pp *Progs) settext(fn *ir.Func) {
if pp.Text != nil {
base.Fatalf("Progs.settext called twice")
}
ptxt := pp.Prog(obj.ATEXT)
pp.Text = ptxt
fn.LSym.Func().Text = ptxt
ptxt.From.Type = obj.TYPE_MEM
ptxt.From.Name = obj.NAME_EXTERN
ptxt.From.Sym = fn.LSym
}
// makeABIWrapper creates a new function that wraps a cross-ABI call
// to "f". The wrapper is marked as an ABIWRAPPER.
func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {
// Q: is this needed?
savepos := base.Pos
savedclcontext := dclcontext
savedcurfn := Curfn
base.Pos = autogeneratedPos
dclcontext = ir.PEXTERN
// At the moment we don't support wrapping a method, we'd need machinery
// below to handle the receiver. Panic if we see this scenario.
ft := f.Nname.Ntype.Type()
if ft.NumRecvs() != 0 {
panic("makeABIWrapper support for wrapping methods not implemented")
}
// Manufacture a new func type to use for the wrapper.
var noReceiver *ir.Field
tfn := ir.NewFuncType(base.Pos,
noReceiver,
structargs(ft.Params(), true),
structargs(ft.Results(), false))
// Reuse f's types.Sym to create a new ODCLFUNC/function.
fn := dclfunc(f.Nname.Sym(), tfn)
fn.SetDupok(true)
fn.SetWrapper(true) // ignore frame for panic+recover matching
// Select LSYM now.
asym := base.Ctxt.LookupABI(f.LSym.Name, wrapperABI)
asym.Type = objabi.STEXT
if fn.LSym != nil {
panic("unexpected")
}
fn.LSym = asym
// ABI0-to-ABIInternal wrappers will be mainly loading params from
// stack into registers (and/or storing stack locations back to
// registers after the wrapped call); in most cases they won't
// need to allocate stack space, so it should be OK to mark them
// as NOSPLIT in these cases. In addition, my assumption is that
// functions written in assembly are NOSPLIT in most (but not all)
// cases. In the case of an ABIInternal target that has too many
// parameters to fit into registers, the wrapper would need to
// allocate stack space, but this seems like an unlikely scenario.
// Hence: mark these wrappers NOSPLIT.
//
// ABIInternal-to-ABI0 wrappers on the other hand will be taking
// things in registers and pushing them onto the stack prior to
// the ABI0 call, meaning that they will always need to allocate
// stack space. If the compiler marks them as NOSPLIT this seems
// as though it could lead to situations where the the linker's
// nosplit-overflow analysis would trigger a link failure. On the
// other hand if they not tagged NOSPLIT then this could cause
// problems when building the runtime (since there may be calls to
// asm routine in cases where it's not safe to grow the stack). In
// most cases the wrapper would be (in effect) inlined, but are
// there (perhaps) indirect calls from the runtime that could run
// into trouble here.
// FIXME: at the moment all.bash does not pass when I leave out
// NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT.
setupTextLSym(fn, obj.NOSPLIT|obj.ABIWRAPPER)
// Generate call. Use tail call if no params and no returns,
// but a regular call otherwise.
//
// Note: ideally we would be using a tail call in cases where
// there are params but no returns for ABI0->ABIInternal wrappers,
// provided that all params fit into registers (e.g. we don't have
// to allocate any stack space). Doing this will require some
// extra work in typecheck/walk/ssa, might want to add a new node
// OTAILCALL or something to this effect.
var call ir.Node
if tfn.Type().NumResults() == 0 && tfn.Type().NumParams() == 0 && tfn.Type().NumRecvs() == 0 {
call = nodSym(ir.ORETJMP, nil, f.Nname.Sym())
} else {
call = ir.Nod(ir.OCALL, f.Nname, nil)
call.PtrList().Set(paramNnames(tfn.Type()))
call.SetIsDDD(tfn.Type().IsVariadic())
if tfn.Type().NumResults() > 0 {
n := ir.Nod(ir.ORETURN, nil, nil)
n.PtrList().Set1(call)
call = n
}
}
fn.PtrBody().Append(call)
funcbody()
if base.Debug.DclStack != 0 {
testdclstack()
}
typecheckFunc(fn)
Curfn = fn
typecheckslice(fn.Body().Slice(), ctxStmt)
escapeFuncs([]*ir.Func{fn}, false)
Target.Decls = append(Target.Decls, fn)
// Restore previous context.
base.Pos = savepos
dclcontext = savedclcontext
Curfn = savedcurfn
}
// initLSym defines f's obj.LSym and initializes it based on the
// properties of f. This includes setting the symbol flags and ABI and
// creating and initializing related DWARF symbols.
//
// initLSym must be called exactly once per function and must be
// called for both functions with bodies and functions without bodies.
// For body-less functions, we only create the LSym; for functions
// with bodies call a helper to setup up / populate the LSym.
func initLSym(f *ir.Func, hasBody bool) {
// FIXME: for new-style ABI wrappers, we set up the lsym at the
// point the wrapper is created.
if f.LSym != nil && base.Flag.ABIWrap {
return
}
selectLSym(f, hasBody)
if hasBody {
setupTextLSym(f, 0)
}
}
// selectLSym sets up the LSym for a given function, and
// makes calls to helpers to create ABI wrappers if needed.
func selectLSym(f *ir.Func, hasBody bool) {
if f.LSym != nil {
base.Fatalf("Func.initLSym called twice")
}
if nam := f.Nname; !ir.IsBlank(nam) {
var wrapperABI obj.ABI
needABIWrapper := false
defABI, hasDefABI := symabiDefs[nam.Sym().LinksymName()]
if hasDefABI && defABI == obj.ABI0 {
// Symbol is defined as ABI0. Create an
// Internal -> ABI0 wrapper.
f.LSym = nam.Sym().LinksymABI0()
needABIWrapper, wrapperABI = true, obj.ABIInternal
} else {
f.LSym = nam.Sym().Linksym()
// No ABI override. Check that the symbol is
// using the expected ABI.
want := obj.ABIInternal
if f.LSym.ABI() != want {
base.Fatalf("function symbol %s has the wrong ABI %v, expected %v", f.LSym.Name, f.LSym.ABI(), want)
}
}
if f.Pragma&ir.Systemstack != 0 {
f.LSym.Set(obj.AttrCFunc, true)
}
isLinknameExported := nam.Sym().Linkname != "" && (hasBody || hasDefABI)
if abi, ok := symabiRefs[f.LSym.Name]; (ok && abi == obj.ABI0) || isLinknameExported {
// Either 1) this symbol is definitely
// referenced as ABI0 from this package; or 2)
// this symbol is defined in this package but
// given a linkname, indicating that it may be
// referenced from another package. Create an
// ABI0 -> Internal wrapper so it can be
// called as ABI0. In case 2, it's important
// that we know it's defined in this package
// since other packages may "pull" symbols
// using linkname and we don't want to create
// duplicate ABI wrappers.
if f.LSym.ABI() != obj.ABI0 {
needABIWrapper, wrapperABI = true, obj.ABI0
}
}
if needABIWrapper {
if !useABIWrapGen(f) {
// Fallback: use alias instead. FIXME.
// These LSyms have the same name as the
// native function, so we create them directly
// rather than looking them up. The uniqueness
// of f.lsym ensures uniqueness of asym.
asym := &obj.LSym{
Name: f.LSym.Name,
Type: objabi.SABIALIAS,
R: []obj.Reloc{{Sym: f.LSym}}, // 0 size, so "informational"
}
asym.SetABI(wrapperABI)
asym.Set(obj.AttrDuplicateOK, true)
base.Ctxt.ABIAliases = append(base.Ctxt.ABIAliases, asym)
} else {
if base.Debug.ABIWrap != 0 {
fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %s.%s\n",
wrapperABI, 1-wrapperABI, types.LocalPkg.Path, f.LSym.Name)
}
makeABIWrapper(f, wrapperABI)
}
}
}
}
// setupTextLsym initializes the LSym for a with-body text symbol.
func setupTextLSym(f *ir.Func, flag int) {
if f.Dupok() {
flag |= obj.DUPOK
}
if f.Wrapper() {
flag |= obj.WRAPPER
}
if f.Needctxt() {
flag |= obj.NEEDCTXT
}
if f.Pragma&ir.Nosplit != 0 {
flag |= obj.NOSPLIT
}
if f.ReflectMethod() {
flag |= obj.REFLECTMETHOD
}
// Clumsy but important.
// See test/recover.go for test cases and src/reflect/value.go
// for the actual functions being considered.
if base.Ctxt.Pkgpath == "reflect" {
switch f.Sym().Name {
case "callReflect", "callMethod":
flag |= obj.WRAPPER
}
}
base.Ctxt.InitTextSym(f.LSym, flag)
}
func ggloblnod(nam ir.Node) {
s := nam.Sym().Linksym()
s.Gotype = ngotype(nam).Linksym()
flags := 0
if nam.Name().Readonly() {
flags = obj.RODATA
}
if nam.Type() != nil && !nam.Type().HasPointers() {
flags |= obj.NOPTR
}
base.Ctxt.Globl(s, nam.Type().Width, flags)
if nam.Name().LibfuzzerExtraCounter() {
s.Type = objabi.SLIBFUZZER_EXTRA_COUNTER
}
if nam.Sym().Linkname != "" {
// Make sure linkname'd symbol is non-package. When a symbol is
// both imported and linkname'd, s.Pkg may not set to "_" in
// types.Sym.Linksym because LSym already exists. Set it here.
s.Pkg = "_"
}
}
func ggloblsym(s *obj.LSym, width int32, flags int16) {
if flags&obj.LOCAL != 0 {
s.Set(obj.AttrLocal, true)
flags &^= obj.LOCAL
}
base.Ctxt.Globl(s, int64(width), int(flags))
}
func Addrconst(a *obj.Addr, v int64) {
a.SetConst(v)
}
func Patch(p *obj.Prog, to *obj.Prog) {
p.To.SetTarget(to)
}