mirror of https://github.com/golang/go.git
465 lines
14 KiB
Go
465 lines
14 KiB
Go
// Derived from Inferno utils/6c/txt.c
|
|
// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6c/txt.c
|
|
//
|
|
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
|
|
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
|
|
// Portions Copyright © 1997-1999 Vita Nuova Limited
|
|
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
|
|
// Portions Copyright © 2004,2006 Bruce Ellis
|
|
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
|
|
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
|
|
// Portions Copyright © 2009 The Go Authors. All rights reserved.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/ssa"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/objabi"
|
|
"cmd/internal/src"
|
|
"fmt"
|
|
"os"
|
|
)
|
|
|
|
var sharedProgArray = new([10000]obj.Prog) // *T instead of T to work around issue 19839
|
|
|
|
// Progs accumulates Progs for a function and converts them into machine code.
|
|
type Progs struct {
|
|
Text *obj.Prog // ATEXT Prog for this function
|
|
next *obj.Prog // next Prog
|
|
pc int64 // virtual PC; count of Progs
|
|
pos src.XPos // position to use for new Progs
|
|
curfn *ir.Func // fn these Progs are for
|
|
progcache []obj.Prog // local progcache
|
|
cacheidx int // first free element of progcache
|
|
|
|
nextLive LivenessIndex // liveness index for the next Prog
|
|
prevLive LivenessIndex // last emitted liveness index
|
|
}
|
|
|
|
// newProgs returns a new Progs for fn.
|
|
// worker indicates which of the backend workers will use the Progs.
|
|
func newProgs(fn *ir.Func, worker int) *Progs {
|
|
pp := new(Progs)
|
|
if base.Ctxt.CanReuseProgs() {
|
|
sz := len(sharedProgArray) / base.Flag.LowerC
|
|
pp.progcache = sharedProgArray[sz*worker : sz*(worker+1)]
|
|
}
|
|
pp.curfn = fn
|
|
|
|
// prime the pump
|
|
pp.next = pp.NewProg()
|
|
pp.clearp(pp.next)
|
|
|
|
pp.pos = fn.Pos()
|
|
pp.settext(fn)
|
|
// PCDATA tables implicitly start with index -1.
|
|
pp.prevLive = LivenessIndex{-1, false}
|
|
pp.nextLive = pp.prevLive
|
|
return pp
|
|
}
|
|
|
|
func (pp *Progs) NewProg() *obj.Prog {
|
|
var p *obj.Prog
|
|
if pp.cacheidx < len(pp.progcache) {
|
|
p = &pp.progcache[pp.cacheidx]
|
|
pp.cacheidx++
|
|
} else {
|
|
p = new(obj.Prog)
|
|
}
|
|
p.Ctxt = base.Ctxt
|
|
return p
|
|
}
|
|
|
|
// Flush converts from pp to machine code.
|
|
func (pp *Progs) Flush() {
|
|
plist := &obj.Plist{Firstpc: pp.Text, Curfn: pp.curfn}
|
|
obj.Flushplist(base.Ctxt, plist, pp.NewProg, base.Ctxt.Pkgpath)
|
|
}
|
|
|
|
// Free clears pp and any associated resources.
|
|
func (pp *Progs) Free() {
|
|
if base.Ctxt.CanReuseProgs() {
|
|
// Clear progs to enable GC and avoid abuse.
|
|
s := pp.progcache[:pp.cacheidx]
|
|
for i := range s {
|
|
s[i] = obj.Prog{}
|
|
}
|
|
}
|
|
// Clear pp to avoid abuse.
|
|
*pp = Progs{}
|
|
}
|
|
|
|
// Prog adds a Prog with instruction As to pp.
|
|
func (pp *Progs) Prog(as obj.As) *obj.Prog {
|
|
if pp.nextLive.StackMapValid() && pp.nextLive.stackMapIndex != pp.prevLive.stackMapIndex {
|
|
// Emit stack map index change.
|
|
idx := pp.nextLive.stackMapIndex
|
|
pp.prevLive.stackMapIndex = idx
|
|
p := pp.Prog(obj.APCDATA)
|
|
Addrconst(&p.From, objabi.PCDATA_StackMapIndex)
|
|
Addrconst(&p.To, int64(idx))
|
|
}
|
|
if pp.nextLive.isUnsafePoint != pp.prevLive.isUnsafePoint {
|
|
// Emit unsafe-point marker.
|
|
pp.prevLive.isUnsafePoint = pp.nextLive.isUnsafePoint
|
|
p := pp.Prog(obj.APCDATA)
|
|
Addrconst(&p.From, objabi.PCDATA_UnsafePoint)
|
|
if pp.nextLive.isUnsafePoint {
|
|
Addrconst(&p.To, objabi.PCDATA_UnsafePointUnsafe)
|
|
} else {
|
|
Addrconst(&p.To, objabi.PCDATA_UnsafePointSafe)
|
|
}
|
|
}
|
|
|
|
p := pp.next
|
|
pp.next = pp.NewProg()
|
|
pp.clearp(pp.next)
|
|
p.Link = pp.next
|
|
|
|
if !pp.pos.IsKnown() && base.Flag.K != 0 {
|
|
base.Warn("prog: unknown position (line 0)")
|
|
}
|
|
|
|
p.As = as
|
|
p.Pos = pp.pos
|
|
if pp.pos.IsStmt() == src.PosIsStmt {
|
|
// Clear IsStmt for later Progs at this pos provided that as can be marked as a stmt
|
|
if ssa.LosesStmtMark(as) {
|
|
return p
|
|
}
|
|
pp.pos = pp.pos.WithNotStmt()
|
|
}
|
|
return p
|
|
}
|
|
|
|
func (pp *Progs) clearp(p *obj.Prog) {
|
|
obj.Nopout(p)
|
|
p.As = obj.AEND
|
|
p.Pc = pp.pc
|
|
pp.pc++
|
|
}
|
|
|
|
func (pp *Progs) Appendpp(p *obj.Prog, as obj.As, ftype obj.AddrType, freg int16, foffset int64, ttype obj.AddrType, treg int16, toffset int64) *obj.Prog {
|
|
q := pp.NewProg()
|
|
pp.clearp(q)
|
|
q.As = as
|
|
q.Pos = p.Pos
|
|
q.From.Type = ftype
|
|
q.From.Reg = freg
|
|
q.From.Offset = foffset
|
|
q.To.Type = ttype
|
|
q.To.Reg = treg
|
|
q.To.Offset = toffset
|
|
q.Link = p.Link
|
|
p.Link = q
|
|
return q
|
|
}
|
|
|
|
func (pp *Progs) settext(fn *ir.Func) {
|
|
if pp.Text != nil {
|
|
base.Fatalf("Progs.settext called twice")
|
|
}
|
|
ptxt := pp.Prog(obj.ATEXT)
|
|
pp.Text = ptxt
|
|
|
|
fn.LSym.Func().Text = ptxt
|
|
ptxt.From.Type = obj.TYPE_MEM
|
|
ptxt.From.Name = obj.NAME_EXTERN
|
|
ptxt.From.Sym = fn.LSym
|
|
}
|
|
|
|
// makeABIWrapper creates a new function that wraps a cross-ABI call
|
|
// to "f". The wrapper is marked as an ABIWRAPPER.
|
|
func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {
|
|
|
|
// Q: is this needed?
|
|
savepos := base.Pos
|
|
savedclcontext := dclcontext
|
|
savedcurfn := Curfn
|
|
|
|
base.Pos = autogeneratedPos
|
|
dclcontext = ir.PEXTERN
|
|
|
|
// At the moment we don't support wrapping a method, we'd need machinery
|
|
// below to handle the receiver. Panic if we see this scenario.
|
|
ft := f.Nname.Ntype.Type()
|
|
if ft.NumRecvs() != 0 {
|
|
panic("makeABIWrapper support for wrapping methods not implemented")
|
|
}
|
|
|
|
// Manufacture a new func type to use for the wrapper.
|
|
var noReceiver *ir.Field
|
|
tfn := ir.NewFuncType(base.Pos,
|
|
noReceiver,
|
|
structargs(ft.Params(), true),
|
|
structargs(ft.Results(), false))
|
|
|
|
// Reuse f's types.Sym to create a new ODCLFUNC/function.
|
|
fn := dclfunc(f.Nname.Sym(), tfn)
|
|
fn.SetDupok(true)
|
|
fn.SetWrapper(true) // ignore frame for panic+recover matching
|
|
|
|
// Select LSYM now.
|
|
asym := base.Ctxt.LookupABI(f.LSym.Name, wrapperABI)
|
|
asym.Type = objabi.STEXT
|
|
if fn.LSym != nil {
|
|
panic("unexpected")
|
|
}
|
|
fn.LSym = asym
|
|
|
|
// ABI0-to-ABIInternal wrappers will be mainly loading params from
|
|
// stack into registers (and/or storing stack locations back to
|
|
// registers after the wrapped call); in most cases they won't
|
|
// need to allocate stack space, so it should be OK to mark them
|
|
// as NOSPLIT in these cases. In addition, my assumption is that
|
|
// functions written in assembly are NOSPLIT in most (but not all)
|
|
// cases. In the case of an ABIInternal target that has too many
|
|
// parameters to fit into registers, the wrapper would need to
|
|
// allocate stack space, but this seems like an unlikely scenario.
|
|
// Hence: mark these wrappers NOSPLIT.
|
|
//
|
|
// ABIInternal-to-ABI0 wrappers on the other hand will be taking
|
|
// things in registers and pushing them onto the stack prior to
|
|
// the ABI0 call, meaning that they will always need to allocate
|
|
// stack space. If the compiler marks them as NOSPLIT this seems
|
|
// as though it could lead to situations where the the linker's
|
|
// nosplit-overflow analysis would trigger a link failure. On the
|
|
// other hand if they not tagged NOSPLIT then this could cause
|
|
// problems when building the runtime (since there may be calls to
|
|
// asm routine in cases where it's not safe to grow the stack). In
|
|
// most cases the wrapper would be (in effect) inlined, but are
|
|
// there (perhaps) indirect calls from the runtime that could run
|
|
// into trouble here.
|
|
// FIXME: at the moment all.bash does not pass when I leave out
|
|
// NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT.
|
|
setupTextLSym(fn, obj.NOSPLIT|obj.ABIWRAPPER)
|
|
|
|
// Generate call. Use tail call if no params and no returns,
|
|
// but a regular call otherwise.
|
|
//
|
|
// Note: ideally we would be using a tail call in cases where
|
|
// there are params but no returns for ABI0->ABIInternal wrappers,
|
|
// provided that all params fit into registers (e.g. we don't have
|
|
// to allocate any stack space). Doing this will require some
|
|
// extra work in typecheck/walk/ssa, might want to add a new node
|
|
// OTAILCALL or something to this effect.
|
|
var call ir.Node
|
|
if tfn.Type().NumResults() == 0 && tfn.Type().NumParams() == 0 && tfn.Type().NumRecvs() == 0 {
|
|
call = nodSym(ir.ORETJMP, nil, f.Nname.Sym())
|
|
} else {
|
|
call = ir.Nod(ir.OCALL, f.Nname, nil)
|
|
call.PtrList().Set(paramNnames(tfn.Type()))
|
|
call.SetIsDDD(tfn.Type().IsVariadic())
|
|
if tfn.Type().NumResults() > 0 {
|
|
n := ir.Nod(ir.ORETURN, nil, nil)
|
|
n.PtrList().Set1(call)
|
|
call = n
|
|
}
|
|
}
|
|
fn.PtrBody().Append(call)
|
|
|
|
funcbody()
|
|
if base.Debug.DclStack != 0 {
|
|
testdclstack()
|
|
}
|
|
|
|
typecheckFunc(fn)
|
|
Curfn = fn
|
|
typecheckslice(fn.Body().Slice(), ctxStmt)
|
|
|
|
escapeFuncs([]*ir.Func{fn}, false)
|
|
|
|
Target.Decls = append(Target.Decls, fn)
|
|
|
|
// Restore previous context.
|
|
base.Pos = savepos
|
|
dclcontext = savedclcontext
|
|
Curfn = savedcurfn
|
|
}
|
|
|
|
// initLSym defines f's obj.LSym and initializes it based on the
|
|
// properties of f. This includes setting the symbol flags and ABI and
|
|
// creating and initializing related DWARF symbols.
|
|
//
|
|
// initLSym must be called exactly once per function and must be
|
|
// called for both functions with bodies and functions without bodies.
|
|
// For body-less functions, we only create the LSym; for functions
|
|
// with bodies call a helper to setup up / populate the LSym.
|
|
func initLSym(f *ir.Func, hasBody bool) {
|
|
// FIXME: for new-style ABI wrappers, we set up the lsym at the
|
|
// point the wrapper is created.
|
|
if f.LSym != nil && base.Flag.ABIWrap {
|
|
return
|
|
}
|
|
selectLSym(f, hasBody)
|
|
if hasBody {
|
|
setupTextLSym(f, 0)
|
|
}
|
|
}
|
|
|
|
// selectLSym sets up the LSym for a given function, and
|
|
// makes calls to helpers to create ABI wrappers if needed.
|
|
func selectLSym(f *ir.Func, hasBody bool) {
|
|
if f.LSym != nil {
|
|
base.Fatalf("Func.initLSym called twice")
|
|
}
|
|
|
|
if nam := f.Nname; !ir.IsBlank(nam) {
|
|
|
|
var wrapperABI obj.ABI
|
|
needABIWrapper := false
|
|
defABI, hasDefABI := symabiDefs[nam.Sym().LinksymName()]
|
|
if hasDefABI && defABI == obj.ABI0 {
|
|
// Symbol is defined as ABI0. Create an
|
|
// Internal -> ABI0 wrapper.
|
|
f.LSym = nam.Sym().LinksymABI0()
|
|
needABIWrapper, wrapperABI = true, obj.ABIInternal
|
|
} else {
|
|
f.LSym = nam.Sym().Linksym()
|
|
// No ABI override. Check that the symbol is
|
|
// using the expected ABI.
|
|
want := obj.ABIInternal
|
|
if f.LSym.ABI() != want {
|
|
base.Fatalf("function symbol %s has the wrong ABI %v, expected %v", f.LSym.Name, f.LSym.ABI(), want)
|
|
}
|
|
}
|
|
if f.Pragma&ir.Systemstack != 0 {
|
|
f.LSym.Set(obj.AttrCFunc, true)
|
|
}
|
|
|
|
isLinknameExported := nam.Sym().Linkname != "" && (hasBody || hasDefABI)
|
|
if abi, ok := symabiRefs[f.LSym.Name]; (ok && abi == obj.ABI0) || isLinknameExported {
|
|
// Either 1) this symbol is definitely
|
|
// referenced as ABI0 from this package; or 2)
|
|
// this symbol is defined in this package but
|
|
// given a linkname, indicating that it may be
|
|
// referenced from another package. Create an
|
|
// ABI0 -> Internal wrapper so it can be
|
|
// called as ABI0. In case 2, it's important
|
|
// that we know it's defined in this package
|
|
// since other packages may "pull" symbols
|
|
// using linkname and we don't want to create
|
|
// duplicate ABI wrappers.
|
|
if f.LSym.ABI() != obj.ABI0 {
|
|
needABIWrapper, wrapperABI = true, obj.ABI0
|
|
}
|
|
}
|
|
|
|
if needABIWrapper {
|
|
if !useABIWrapGen(f) {
|
|
// Fallback: use alias instead. FIXME.
|
|
|
|
// These LSyms have the same name as the
|
|
// native function, so we create them directly
|
|
// rather than looking them up. The uniqueness
|
|
// of f.lsym ensures uniqueness of asym.
|
|
asym := &obj.LSym{
|
|
Name: f.LSym.Name,
|
|
Type: objabi.SABIALIAS,
|
|
R: []obj.Reloc{{Sym: f.LSym}}, // 0 size, so "informational"
|
|
}
|
|
asym.SetABI(wrapperABI)
|
|
asym.Set(obj.AttrDuplicateOK, true)
|
|
base.Ctxt.ABIAliases = append(base.Ctxt.ABIAliases, asym)
|
|
} else {
|
|
if base.Debug.ABIWrap != 0 {
|
|
fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %s.%s\n",
|
|
wrapperABI, 1-wrapperABI, types.LocalPkg.Path, f.LSym.Name)
|
|
}
|
|
makeABIWrapper(f, wrapperABI)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// setupTextLsym initializes the LSym for a with-body text symbol.
|
|
func setupTextLSym(f *ir.Func, flag int) {
|
|
if f.Dupok() {
|
|
flag |= obj.DUPOK
|
|
}
|
|
if f.Wrapper() {
|
|
flag |= obj.WRAPPER
|
|
}
|
|
if f.Needctxt() {
|
|
flag |= obj.NEEDCTXT
|
|
}
|
|
if f.Pragma&ir.Nosplit != 0 {
|
|
flag |= obj.NOSPLIT
|
|
}
|
|
if f.ReflectMethod() {
|
|
flag |= obj.REFLECTMETHOD
|
|
}
|
|
|
|
// Clumsy but important.
|
|
// See test/recover.go for test cases and src/reflect/value.go
|
|
// for the actual functions being considered.
|
|
if base.Ctxt.Pkgpath == "reflect" {
|
|
switch f.Sym().Name {
|
|
case "callReflect", "callMethod":
|
|
flag |= obj.WRAPPER
|
|
}
|
|
}
|
|
|
|
base.Ctxt.InitTextSym(f.LSym, flag)
|
|
}
|
|
|
|
func ggloblnod(nam ir.Node) {
|
|
s := nam.Sym().Linksym()
|
|
s.Gotype = ngotype(nam).Linksym()
|
|
flags := 0
|
|
if nam.Name().Readonly() {
|
|
flags = obj.RODATA
|
|
}
|
|
if nam.Type() != nil && !nam.Type().HasPointers() {
|
|
flags |= obj.NOPTR
|
|
}
|
|
base.Ctxt.Globl(s, nam.Type().Width, flags)
|
|
if nam.Name().LibfuzzerExtraCounter() {
|
|
s.Type = objabi.SLIBFUZZER_EXTRA_COUNTER
|
|
}
|
|
if nam.Sym().Linkname != "" {
|
|
// Make sure linkname'd symbol is non-package. When a symbol is
|
|
// both imported and linkname'd, s.Pkg may not set to "_" in
|
|
// types.Sym.Linksym because LSym already exists. Set it here.
|
|
s.Pkg = "_"
|
|
}
|
|
}
|
|
|
|
func ggloblsym(s *obj.LSym, width int32, flags int16) {
|
|
if flags&obj.LOCAL != 0 {
|
|
s.Set(obj.AttrLocal, true)
|
|
flags &^= obj.LOCAL
|
|
}
|
|
base.Ctxt.Globl(s, int64(width), int(flags))
|
|
}
|
|
|
|
func Addrconst(a *obj.Addr, v int64) {
|
|
a.SetConst(v)
|
|
}
|
|
|
|
func Patch(p *obj.Prog, to *obj.Prog) {
|
|
p.To.SetTarget(to)
|
|
}
|