go/src/runtime/lfstack_64bit.go

58 lines
2.3 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64 arm64 mips64 mips64le ppc64 ppc64le s390x
package runtime
import "unsafe"
const (
// addrBits is the number of bits needed to represent a virtual address.
//
// In Linux the user address space for each architecture is limited as
// follows (taken from the processor.h file for the architecture):
//
// Architecture Name Maximum Value (exclusive)
// ---------------------------------------------------------------------
// amd64 TASK_SIZE_MAX 0x007ffffffff000 (47 bit addresses)
// arm64 TASK_SIZE_64 0x01000000000000 (48 bit addresses)
// ppc64{,le} TASK_SIZE_USER64 0x00400000000000 (46 bit addresses)
// mips64{,le} TASK_SIZE64 0x00010000000000 (40 bit addresses)
// s390x TASK_SIZE 1<<64 (64 bit addresses)
//
// These values may increase over time. In particular, ppc64
// and mips64 support arbitrary 64-bit addresses in hardware,
// but Linux imposes the above limits. amd64 has hardware
// support for 57 bit addresses as of 2017 (56 bits for user
// space), but Linux only uses addresses above 1<<47 for
// mappings that explicitly pass a high hint address.
//
// On AMD64, virtual addresses are 48-bit (or 57-bit) numbers sign extended to 64.
// We shift the address left 16 to eliminate the sign extended part and make
// room in the bottom for the count.
//
// On s390x, there's not much we can do, so we just hope that
// the kernel doesn't get to really high addresses.
addrBits = 48
// In addition to the 16 bits taken from the top, we can take 3 from the
// bottom, because node must be pointer-aligned, giving a total of 19 bits
// of count.
cntBits = 64 - addrBits + 3
)
func lfstackPack(node *lfnode, cnt uintptr) uint64 {
return uint64(uintptr(unsafe.Pointer(node)))<<(64-addrBits) | uint64(cnt&(1<<cntBits-1))
}
func lfstackUnpack(val uint64) *lfnode {
if GOARCH == "amd64" {
// amd64 systems can place the stack above the VA hole, so we need to sign extend
// val before unpacking.
return (*lfnode)(unsafe.Pointer(uintptr(int64(val) >> cntBits << 3)))
}
return (*lfnode)(unsafe.Pointer(uintptr(val >> cntBits << 3)))
}