go/src/internal/runtime/maps/table.go

856 lines
26 KiB
Go

// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package maps implements Go's builtin map type.
package maps
import (
"internal/abi"
"internal/goarch"
"unsafe"
)
// Maximum size of a table before it is split at the directory level.
//
// TODO: Completely made up value. This should be tuned for performance vs grow
// latency.
// TODO: This should likely be based on byte size, as copying costs will
// dominate grow latency for large objects.
const maxTableCapacity = 1024
// Ensure the max capacity fits in uint16, used for capacity and growthLeft
// below.
var _ = uint16(maxTableCapacity)
// table is a Swiss table hash table structure.
//
// Each table is a complete hash table implementation.
//
// Map uses one or more tables to store entries. Extendible hashing (hash
// prefix) is used to select the table to use for a specific key. Using
// multiple tables enables incremental growth by growing only one table at a
// time.
type table struct {
// The number of filled slots (i.e. the number of elements in the table).
used uint16
// The total number of slots (always 2^N). Equal to
// `(groups.lengthMask+1)*abi.SwissMapGroupSlots`.
capacity uint16
// The number of slots we can still fill without needing to rehash.
//
// We rehash when used + tombstones > loadFactor*capacity, including
// tombstones so the table doesn't overfill with tombstones. This field
// counts down remaining empty slots before the next rehash.
growthLeft uint16
// The number of bits used by directory lookups above this table. Note
// that this may be less then globalDepth, if the directory has grown
// but this table has not yet been split.
localDepth uint8
// TODO(prattmic): Old maps pass this into every call instead of
// keeping a reference in the map header. This is probably more
// efficient and arguably more robust (crafty users can't reach into to
// the map to change its type), but I leave it here for now for
// simplicity.
typ *abi.SwissMapType
// seed is the hash seed, computed as a unique random number per table.
// TODO(prattmic): Populate this on table initialization.
seed uintptr
// Index of this table in the Map directory. This is the index of the
// _first_ location in the directory. The table may occur in multiple
// sequential indicies.
index int
// groups is an array of slot groups. Each group holds abi.SwissMapGroupSlots
// key/elem slots and their control bytes. A table has a fixed size
// groups array. The table is replaced (in rehash) when more space is
// required.
//
// TODO(prattmic): keys and elements are interleaved to maximize
// locality, but it comes at the expense of wasted space for some types
// (consider uint8 key, uint64 element). Consider placing all keys
// together in these cases to save space.
//
// TODO(prattmic): Support indirect keys/values? This means storing
// keys/values as pointers rather than inline in the slot. This avoid
// bloating the table size if either type is very large.
groups groupsReference
}
func newTable(mt *abi.SwissMapType, capacity uint64, index int, localDepth uint8) *table {
if capacity < abi.SwissMapGroupSlots {
// TODO: temporary until we have a real map type.
capacity = abi.SwissMapGroupSlots
}
t := &table{
typ: mt,
index: index,
localDepth: localDepth,
}
if capacity > maxTableCapacity {
panic("initial table capacity too large")
}
// N.B. group count must be a power of two for probeSeq to visit every
// group.
capacity, overflow := alignUpPow2(capacity)
if overflow {
panic("rounded-up capacity overflows uint64")
}
t.reset(uint16(capacity))
return t
}
// reset resets the table with new, empty groups with the specified new total
// capacity.
func (t *table) reset(capacity uint16) {
groupCount := uint64(capacity) / abi.SwissMapGroupSlots
t.groups = newGroups(t.typ, groupCount)
t.capacity = capacity
t.resetGrowthLeft()
for i := uint64(0); i <= t.groups.lengthMask; i++ {
g := t.groups.group(i)
g.ctrls().setEmpty()
}
}
// Preconditions: table must be empty.
func (t *table) resetGrowthLeft() {
var growthLeft uint16
if t.capacity == 0 {
// No real reason to support zero capacity table, since an
// empty Map simply won't have a table.
panic("table must have positive capacity")
} else if t.capacity <= abi.SwissMapGroupSlots {
// If the map fits in a single group then we're able to fill all of
// the slots except 1 (an empty slot is needed to terminate find
// operations).
//
// TODO(go.dev/issue/54766): With a special case in probing for
// single-group tables, we could fill all slots.
growthLeft = t.capacity - 1
} else {
if t.capacity*maxAvgGroupLoad < t.capacity {
// TODO(prattmic): Do something cleaner.
panic("overflow")
}
growthLeft = (t.capacity * maxAvgGroupLoad) / abi.SwissMapGroupSlots
}
t.growthLeft = growthLeft
}
func (t *table) Used() uint64 {
return uint64(t.used)
}
// Get performs a lookup of the key that key points to. It returns a pointer to
// the element, or false if the key doesn't exist.
func (t *table) Get(key unsafe.Pointer) (unsafe.Pointer, bool) {
// TODO(prattmic): We could avoid hashing in a variety of special
// cases.
//
// - One entry maps could just directly compare the single entry
// without hashing.
// - String keys could do quick checks of a few bytes before hashing.
hash := t.typ.Hasher(key, t.seed)
_, elem, ok := t.getWithKey(hash, key)
return elem, ok
}
// getWithKey performs a lookup of key, returning a pointer to the version of
// the key in the map in addition to the element.
//
// This is relevant when multiple different key values compare equal (e.g.,
// +0.0 and -0.0). When a grow occurs during iteration, iteration perform a
// lookup of keys from the old group in the new group in order to correctly
// expose updated elements. For NeedsKeyUpdate keys, iteration also must return
// the new key value, not the old key value.
// hash must be the hash of the key.
func (t *table) getWithKey(hash uintptr, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer, bool) {
// To find the location of a key in the table, we compute hash(key). From
// h1(hash(key)) and the capacity, we construct a probeSeq that visits
// every group of slots in some interesting order. See [probeSeq].
//
// We walk through these indices. At each index, we select the entire
// group starting with that index and extract potential candidates:
// occupied slots with a control byte equal to h2(hash(key)). The key
// at candidate slot i is compared with key; if key == g.slot(i).key
// we are done and return the slot; if there is an empty slot in the
// group, we stop and return an error; otherwise we continue to the
// next probe index. Tombstones (ctrlDeleted) effectively behave like
// full slots that never match the value we're looking for.
//
// The h2 bits ensure when we compare a key we are likely to have
// actually found the object. That is, the chance is low that keys
// compare false. Thus, when we search for an object, we are unlikely
// to call Equal many times. This likelihood can be analyzed as follows
// (assuming that h2 is a random enough hash function).
//
// Let's assume that there are k "wrong" objects that must be examined
// in a probe sequence. For example, when doing a find on an object
// that is in the table, k is the number of objects between the start
// of the probe sequence and the final found object (not including the
// final found object). The expected number of objects with an h2 match
// is then k/128. Measurements and analysis indicate that even at high
// load factors, k is less than 32, meaning that the number of false
// positive comparisons we must perform is less than 1/8 per find.
seq := makeProbeSeq(h1(hash), t.groups.lengthMask)
for ; ; seq = seq.next() {
g := t.groups.group(seq.offset)
match := g.ctrls().matchH2(h2(hash))
for match != 0 {
i := match.first()
slotKey := g.key(i)
if t.typ.Key.Equal(key, slotKey) {
return slotKey, g.elem(i), true
}
match = match.removeFirst()
}
match = g.ctrls().matchEmpty()
if match != 0 {
// Finding an empty slot means we've reached the end of
// the probe sequence.
return nil, nil, false
}
}
}
// PutSlot returns a pointer to the element slot where an inserted element
// should be written, and ok if it returned a valid slot.
//
// PutSlot returns ok false if the table was split and the Map needs to find
// the new table.
//
// hash must be the hash of key.
func (t *table) PutSlot(m *Map, hash uintptr, key unsafe.Pointer) (unsafe.Pointer, bool) {
seq := makeProbeSeq(h1(hash), t.groups.lengthMask)
// As we look for a match, keep track of the first deleted slot we
// find, which we'll use to insert the new entry if necessary.
var firstDeletedGroup groupReference
var firstDeletedSlot uint32
for ; ; seq = seq.next() {
g := t.groups.group(seq.offset)
match := g.ctrls().matchH2(h2(hash))
// Look for an existing slot containing this key.
for match != 0 {
i := match.first()
slotKey := g.key(i)
if t.typ.Key.Equal(key, slotKey) {
if t.typ.NeedKeyUpdate() {
typedmemmove(t.typ.Key, slotKey, key)
}
slotElem := g.elem(i)
t.checkInvariants()
return slotElem, true
}
match = match.removeFirst()
}
// No existing slot for this key in this group. Is this the end
// of the probe sequence?
match = g.ctrls().matchEmpty()
if match != 0 {
// Finding an empty slot means we've reached the end of
// the probe sequence.
var i uint32
// If we found a deleted slot along the way, we can
// replace it without consuming growthLeft.
if firstDeletedGroup.data != nil {
g = firstDeletedGroup
i = firstDeletedSlot
t.growthLeft++ // will be decremented below to become a no-op.
} else {
// Otherwise, use the empty slot.
i = match.first()
}
// If there is room left to grow, just insert the new entry.
if t.growthLeft > 0 {
slotKey := g.key(i)
typedmemmove(t.typ.Key, slotKey, key)
slotElem := g.elem(i)
g.ctrls().set(i, ctrl(h2(hash)))
t.growthLeft--
t.used++
m.used++
t.checkInvariants()
return slotElem, true
}
t.rehash(m)
return nil, false
}
// No empty slots in this group. Check for a deleted
// slot, which we'll use if we don't find a match later
// in the probe sequence.
//
// We only need to remember a single deleted slot.
if firstDeletedGroup.data == nil {
// Since we already checked for empty slots
// above, matches here must be deleted slots.
match = g.ctrls().matchEmptyOrDeleted()
if match != 0 {
firstDeletedGroup = g
firstDeletedSlot = match.first()
}
}
}
}
// uncheckedPutSlot inserts an entry known not to be in the table, returning an
// entry to the element slot where the element should be written. Used by
// PutSlot after it has failed to find an existing entry to overwrite duration
// insertion.
//
// Updates growthLeft if necessary, but does not update used.
//
// Requires that the entry does not exist in the table, and that the table has
// room for another element without rehashing.
//
// Never returns nil.
func (t *table) uncheckedPutSlot(hash uintptr, key unsafe.Pointer) unsafe.Pointer {
if t.growthLeft == 0 {
panic("invariant failed: growthLeft is unexpectedly 0")
}
// Given key and its hash hash(key), to insert it, we construct a
// probeSeq, and use it to find the first group with an unoccupied (empty
// or deleted) slot. We place the key/value into the first such slot in
// the group and mark it as full with key's H2.
seq := makeProbeSeq(h1(hash), t.groups.lengthMask)
for ; ; seq = seq.next() {
g := t.groups.group(seq.offset)
match := g.ctrls().matchEmpty()
if match != 0 {
i := match.first()
slotKey := g.key(i)
typedmemmove(t.typ.Key, slotKey, key)
slotElem := g.elem(i)
if g.ctrls().get(i) == ctrlEmpty {
t.growthLeft--
}
g.ctrls().set(i, ctrl(h2(hash)))
return slotElem
}
}
}
func (t *table) Delete(m *Map, key unsafe.Pointer) {
hash := t.typ.Hasher(key, t.seed)
seq := makeProbeSeq(h1(hash), t.groups.lengthMask)
for ; ; seq = seq.next() {
g := t.groups.group(seq.offset)
match := g.ctrls().matchH2(h2(hash))
for match != 0 {
i := match.first()
slotKey := g.key(i)
if t.typ.Key.Equal(key, slotKey) {
t.used--
m.used--
typedmemclr(t.typ.Key, slotKey)
typedmemclr(t.typ.Elem, g.elem(i))
// Only a full group can appear in the middle
// of a probe sequence (a group with at least
// one empty slot terminates probing). Once a
// group becomes full, it stays full until
// rehashing/resizing. So if the group isn't
// full now, we can simply remove the element.
// Otherwise, we create a tombstone to mark the
// slot as deleted.
if g.ctrls().matchEmpty() != 0 {
g.ctrls().set(i, ctrlEmpty)
t.growthLeft++
} else {
g.ctrls().set(i, ctrlDeleted)
}
t.checkInvariants()
return
}
match = match.removeFirst()
}
match = g.ctrls().matchEmpty()
if match != 0 {
// Finding an empty slot means we've reached the end of
// the probe sequence.
return
}
}
}
// tombstones returns the number of deleted (tombstone) entries in the table. A
// tombstone is a slot that has been deleted but is still considered occupied
// so as not to violate the probing invariant.
func (t *table) tombstones() uint16 {
return (t.capacity*maxAvgGroupLoad)/abi.SwissMapGroupSlots - t.used - t.growthLeft
}
// Clear deletes all entries from the map resulting in an empty map.
func (t *table) Clear() {
for i := uint64(0); i <= t.groups.lengthMask; i++ {
g := t.groups.group(i)
typedmemclr(t.typ.Group, g.data)
g.ctrls().setEmpty()
}
t.used = 0
t.resetGrowthLeft()
// Reset the hash seed to make it more difficult for attackers to
// repeatedly trigger hash collisions. See issue
// https://github.com/golang/go/issues/25237.
// TODO
//t.seed = uintptr(rand())
}
type Iter struct {
key unsafe.Pointer // Must be in first position. Write nil to indicate iteration end (see cmd/compile/internal/walk/range.go).
elem unsafe.Pointer // Must be in second position (see cmd/compile/internal/walk/range.go).
typ *abi.SwissMapType
m *Map
// Randomize iteration order by starting iteration at a random slot
// offset. The offset into the directory uses a separate offset, as it
// must adjust when the directory grows.
entryOffset uint64
dirOffset uint64
// Snapshot of Map.clearSeq at iteration initialization time. Used to
// detect clear during iteration.
clearSeq uint64
// Value of Map.globalDepth during the last call to Next. Used to
// detect directory grow during iteration.
globalDepth uint8
// dirIdx is the current directory index, prior to adjustment by
// dirOffset.
dirIdx int
// tab is the table at dirIdx during the previous call to Next.
tab *table
// entryIdx is the current entry index, prior to adjustment by entryOffset.
// The lower 3 bits of the index are the slot index, and the upper bits
// are the group index.
entryIdx uint64
}
// Init initializes Iter for iteration.
func (it *Iter) Init(typ *abi.SwissMapType, m *Map) {
it.typ = typ
if m == nil || m.used == 0 {
return
}
it.typ = m.typ
it.m = m
it.entryOffset = rand()
it.dirOffset = rand()
it.globalDepth = m.globalDepth
it.clearSeq = m.clearSeq
}
func (it *Iter) Initialized() bool {
return it.typ != nil
}
// Map returns the map this iterator is iterating over.
func (it *Iter) Map() *Map {
return it.m
}
// Key returns a pointer to the current key. nil indicates end of iteration.
//
// Must not be called prior to Next.
func (it *Iter) Key() unsafe.Pointer {
return it.key
}
// Key returns a pointer to the current element. nil indicates end of
// iteration.
//
// Must not be called prior to Next.
func (it *Iter) Elem() unsafe.Pointer {
return it.elem
}
// Next proceeds to the next element in iteration, which can be accessed via
// the Key and Elem methods.
//
// The table can be mutated during iteration, though there is no guarantee that
// the mutations will be visible to the iteration.
//
// Init must be called prior to Next.
func (it *Iter) Next() {
if it.m == nil {
// Map was empty at Iter.Init.
it.key = nil
it.elem = nil
return
}
if it.globalDepth != it.m.globalDepth {
// Directory has grown since the last call to Next. Adjust our
// directory index.
//
// Consider:
//
// Before:
// - 0: *t1
// - 1: *t2 <- dirIdx
//
// After:
// - 0: *t1a (split)
// - 1: *t1b (split)
// - 2: *t2 <- dirIdx
// - 3: *t2
//
// That is, we want to double the current index when the
// directory size doubles (or quadruple when the directory size
// quadruples, etc).
//
// The actual (randomized) dirIdx is computed below as:
//
// dirIdx := (it.dirIdx + it.dirOffset) % it.m.dirLen
//
// Multiplication is associative across modulo operations,
// A * (B % C) = (A * B) % (A * C),
// provided that A is positive.
//
// Thus we can achieve this by adjusting it.dirIdx,
// it.dirOffset, and it.m.dirLen individually.
orders := it.m.globalDepth - it.globalDepth
it.dirIdx <<= orders
it.dirOffset <<= orders
// it.m.dirLen was already adjusted when the directory grew.
it.globalDepth = it.m.globalDepth
}
// Continue iteration until we find a full slot.
for it.dirIdx < len(it.m.directory) {
// TODO(prattmic): We currently look up the latest table on
// every call, even if it.tab is set because the inner loop
// checks if it.tab has grown by checking it.tab != newTab.
//
// We could avoid most of these lookups if we left a flag
// behind on the old table to denote that it is stale.
dirIdx := int((uint64(it.dirIdx) + it.dirOffset) & uint64(len(it.m.directory)-1))
newTab := it.m.directory[dirIdx]
if it.tab == nil {
if newTab.index != dirIdx {
// Normally we skip past all duplicates of the
// same entry in the table (see updates to
// it.dirIdx at the end of the loop below), so
// this case wouldn't occur.
//
// But on the very first call, we have a
// completely randomized dirIdx that may refer
// to a middle of a run of tables in the
// directory. Do a one-time adjustment of the
// offset to ensure we start at first index for
// newTable.
diff := dirIdx - newTab.index
it.dirOffset -= uint64(diff)
dirIdx = newTab.index
}
it.tab = newTab
}
var g groupReference
// N.B. Use it.tab, not newTab. It is important to use the old
// table for key selection if the table has grown. See comment
// on grown below.
for ; it.entryIdx <= it.tab.groups.entryMask; it.entryIdx++ {
entryIdx := (it.entryIdx + it.entryOffset) & it.tab.groups.entryMask
slotIdx := uint32(entryIdx & (abi.SwissMapGroupSlots - 1))
if slotIdx == 0 || g.data == nil {
// Only compute the group (a) when we switch
// groups (slotIdx rolls over) and (b) on the
// first iteration in this table (slotIdx may
// not be zero due to entryOffset).
groupIdx := entryIdx >> abi.SwissMapGroupSlotsBits
g = it.tab.groups.group(groupIdx)
}
// TODO(prattmic): Skip over groups that are composed of only empty
// or deleted slots using matchEmptyOrDeleted() and counting the
// number of bits set.
if (g.ctrls().get(slotIdx) & ctrlEmpty) == ctrlEmpty {
// Empty or deleted.
continue
}
key := g.key(slotIdx)
// If the table has changed since the last
// call, then it has grown or split. In this
// case, further mutations (changes to
// key->elem or deletions) will not be visible
// in our snapshot table. Instead we must
// consult the new table by doing a full
// lookup.
//
// We still use our old table to decide which
// keys to lookup in order to avoid returning
// the same key twice.
grown := it.tab != newTab
var elem unsafe.Pointer
if grown {
var ok bool
newKey, newElem, ok := it.m.getWithKey(key)
if !ok {
// Key has likely been deleted, and
// should be skipped.
//
// One exception is keys that don't
// compare equal to themselves (e.g.,
// NaN). These keys cannot be looked
// up, so getWithKey will fail even if
// the key exists.
//
// However, we are in luck because such
// keys cannot be updated and they
// cannot be deleted except with clear.
// Thus if no clear has occurted, the
// key/elem must still exist exactly as
// in the old groups, so we can return
// them from there.
//
// TODO(prattmic): Consider checking
// clearSeq early. If a clear occurred,
// Next could always return
// immediately, as iteration doesn't
// need to return anything added after
// clear.
if it.clearSeq == it.m.clearSeq && !it.m.typ.Key.Equal(key, key) {
elem = g.elem(slotIdx)
} else {
continue
}
} else {
key = newKey
elem = newElem
}
} else {
elem = g.elem(slotIdx)
}
it.entryIdx++
it.key = key
it.elem = elem
return
}
// Skip other entries in the directory that refer to the same
// logical table. There are two cases of this:
//
// Consider this directory:
//
// - 0: *t1
// - 1: *t1
// - 2: *t2a
// - 3: *t2b
//
// At some point, the directory grew to accomodate a split of
// t2. t1 did not split, so entries 0 and 1 both point to t1.
// t2 did split, so the two halves were installed in entries 2
// and 3.
//
// If dirIdx is 0 and it.tab is t1, then we should skip past
// entry 1 to avoid repeating t1.
//
// If dirIdx is 2 and it.tab is t2 (pre-split), then we should
// skip past entry 3 because our pre-split t2 already covers
// all keys from t2a and t2b (except for new insertions, which
// iteration need not return).
//
// We can achieve both of these by using to difference between
// the directory and table depth to compute how many entries
// the table covers.
entries := 1 << (it.m.globalDepth - it.tab.localDepth)
it.dirIdx += entries
it.tab = nil
it.entryIdx = 0
}
it.key = nil
it.elem = nil
return
}
// Replaces the table with one larger table or two split tables to fit more
// entries. Since the table is replaced, t is now stale and should not be
// modified.
func (t *table) rehash(m *Map) {
// TODO(prattmic): SwissTables typically perform a "rehash in place"
// operation which recovers capacity consumed by tombstones without growing
// the table by reordering slots as necessary to maintain the probe
// invariant while eliminating all tombstones.
//
// However, it is unclear how to make rehash in place work with
// iteration. Since iteration simply walks through all slots in order
// (with random start offset), reordering the slots would break
// iteration.
//
// As an alternative, we could do a "resize" to new groups allocation
// of the same size. This would eliminate the tombstones, but using a
// new allocation, so the existing grow support in iteration would
// continue to work.
// TODO(prattmic): split table
// TODO(prattmic): Avoid overflow (splitting the table will achieve this)
newCapacity := 2 * t.capacity
if newCapacity <= maxTableCapacity {
t.grow(m, newCapacity)
return
}
t.split(m)
}
// Bitmask for the last selection bit at this depth.
func localDepthMask(localDepth uint8) uintptr {
if goarch.PtrSize == 4 {
return uintptr(1) << (32 - localDepth)
}
return uintptr(1) << (64 - localDepth)
}
// split the table into two, installing the new tables in the map directory.
func (t *table) split(m *Map) {
localDepth := t.localDepth
localDepth++
// TODO: is this the best capacity?
left := newTable(t.typ, maxTableCapacity, -1, localDepth)
right := newTable(t.typ, maxTableCapacity, -1, localDepth)
// Split in half at the localDepth bit from the top.
mask := localDepthMask(localDepth)
for i := uint64(0); i <= t.groups.lengthMask; i++ {
g := t.groups.group(i)
for j := uint32(0); j < abi.SwissMapGroupSlots; j++ {
if (g.ctrls().get(j) & ctrlEmpty) == ctrlEmpty {
// Empty or deleted
continue
}
key := g.key(j)
elem := g.elem(j)
hash := t.typ.Hasher(key, t.seed)
var newTable *table
if hash&mask == 0 {
newTable = left
} else {
newTable = right
}
slotElem := newTable.uncheckedPutSlot(hash, key)
typedmemmove(newTable.typ.Elem, slotElem, elem)
newTable.used++
}
}
m.installTableSplit(t, left, right)
}
// grow the capacity of the table by allocating a new table with a bigger array
// and uncheckedPutting each element of the table into the new table (we know
// that no insertion here will Put an already-present value), and discard the
// old table.
func (t *table) grow(m *Map, newCapacity uint16) {
newTable := newTable(t.typ, uint64(newCapacity), t.index, t.localDepth)
if t.capacity > 0 {
for i := uint64(0); i <= t.groups.lengthMask; i++ {
g := t.groups.group(i)
for j := uint32(0); j < abi.SwissMapGroupSlots; j++ {
if (g.ctrls().get(j) & ctrlEmpty) == ctrlEmpty {
// Empty or deleted
continue
}
key := g.key(j)
elem := g.elem(j)
hash := newTable.typ.Hasher(key, t.seed)
slotElem := newTable.uncheckedPutSlot(hash, key)
typedmemmove(newTable.typ.Elem, slotElem, elem)
newTable.used++
}
}
}
newTable.checkInvariants()
m.replaceTable(newTable)
}
// probeSeq maintains the state for a probe sequence that iterates through the
// groups in a table. The sequence is a triangular progression of the form
//
// p(i) := (i^2 + i)/2 + hash (mod mask+1)
//
// The sequence effectively outputs the indexes of *groups*. The group
// machinery allows us to check an entire group with minimal branching.
//
// It turns out that this probe sequence visits every group exactly once if
// the number of groups is a power of two, since (i^2+i)/2 is a bijection in
// Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing
type probeSeq struct {
mask uint64
offset uint64
index uint64
}
func makeProbeSeq(hash uintptr, mask uint64) probeSeq {
return probeSeq{
mask: mask,
offset: uint64(hash) & mask,
index: 0,
}
}
func (s probeSeq) next() probeSeq {
s.index++
s.offset = (s.offset + s.index) & s.mask
return s
}