mirror of https://github.com/golang/go.git
914 lines
22 KiB
Go
914 lines
22 KiB
Go
// Copyright 2016 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"fmt"
|
|
"sort"
|
|
)
|
|
|
|
// AlgKind describes the kind of algorithms used for comparing and
|
|
// hashing a Type.
|
|
type AlgKind int
|
|
|
|
//go:generate stringer -type AlgKind -trimprefix A
|
|
|
|
const (
|
|
// These values are known by runtime.
|
|
ANOEQ AlgKind = iota
|
|
AMEM0
|
|
AMEM8
|
|
AMEM16
|
|
AMEM32
|
|
AMEM64
|
|
AMEM128
|
|
ASTRING
|
|
AINTER
|
|
ANILINTER
|
|
AFLOAT32
|
|
AFLOAT64
|
|
ACPLX64
|
|
ACPLX128
|
|
|
|
// Type can be compared/hashed as regular memory.
|
|
AMEM AlgKind = 100
|
|
|
|
// Type needs special comparison/hashing functions.
|
|
ASPECIAL AlgKind = -1
|
|
)
|
|
|
|
// IsComparable reports whether t is a comparable type.
|
|
func IsComparable(t *types.Type) bool {
|
|
a, _ := algtype1(t)
|
|
return a != ANOEQ
|
|
}
|
|
|
|
// IsRegularMemory reports whether t can be compared/hashed as regular memory.
|
|
func IsRegularMemory(t *types.Type) bool {
|
|
a, _ := algtype1(t)
|
|
return a == AMEM
|
|
}
|
|
|
|
// IncomparableField returns an incomparable Field of struct Type t, if any.
|
|
func IncomparableField(t *types.Type) *types.Field {
|
|
for _, f := range t.FieldSlice() {
|
|
if !IsComparable(f.Type) {
|
|
return f
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// EqCanPanic reports whether == on type t could panic (has an interface somewhere).
|
|
// t must be comparable.
|
|
func EqCanPanic(t *types.Type) bool {
|
|
switch t.Etype {
|
|
default:
|
|
return false
|
|
case TINTER:
|
|
return true
|
|
case TARRAY:
|
|
return EqCanPanic(t.Elem())
|
|
case TSTRUCT:
|
|
for _, f := range t.FieldSlice() {
|
|
if !f.Sym.IsBlank() && EqCanPanic(f.Type) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
}
|
|
|
|
// algtype is like algtype1, except it returns the fixed-width AMEMxx variants
|
|
// instead of the general AMEM kind when possible.
|
|
func algtype(t *types.Type) AlgKind {
|
|
a, _ := algtype1(t)
|
|
if a == AMEM {
|
|
switch t.Width {
|
|
case 0:
|
|
return AMEM0
|
|
case 1:
|
|
return AMEM8
|
|
case 2:
|
|
return AMEM16
|
|
case 4:
|
|
return AMEM32
|
|
case 8:
|
|
return AMEM64
|
|
case 16:
|
|
return AMEM128
|
|
}
|
|
}
|
|
|
|
return a
|
|
}
|
|
|
|
// algtype1 returns the AlgKind used for comparing and hashing Type t.
|
|
// If it returns ANOEQ, it also returns the component type of t that
|
|
// makes it incomparable.
|
|
func algtype1(t *types.Type) (AlgKind, *types.Type) {
|
|
if t.Broke() {
|
|
return AMEM, nil
|
|
}
|
|
if t.Noalg() {
|
|
return ANOEQ, t
|
|
}
|
|
|
|
switch t.Etype {
|
|
case TANY, TFORW:
|
|
// will be defined later.
|
|
return ANOEQ, t
|
|
|
|
case TINT8, TUINT8, TINT16, TUINT16,
|
|
TINT32, TUINT32, TINT64, TUINT64,
|
|
TINT, TUINT, TUINTPTR,
|
|
TBOOL, TPTR,
|
|
TCHAN, TUNSAFEPTR:
|
|
return AMEM, nil
|
|
|
|
case TFUNC, TMAP:
|
|
return ANOEQ, t
|
|
|
|
case TFLOAT32:
|
|
return AFLOAT32, nil
|
|
|
|
case TFLOAT64:
|
|
return AFLOAT64, nil
|
|
|
|
case TCOMPLEX64:
|
|
return ACPLX64, nil
|
|
|
|
case TCOMPLEX128:
|
|
return ACPLX128, nil
|
|
|
|
case TSTRING:
|
|
return ASTRING, nil
|
|
|
|
case TINTER:
|
|
if t.IsEmptyInterface() {
|
|
return ANILINTER, nil
|
|
}
|
|
return AINTER, nil
|
|
|
|
case TSLICE:
|
|
return ANOEQ, t
|
|
|
|
case TARRAY:
|
|
a, bad := algtype1(t.Elem())
|
|
switch a {
|
|
case AMEM:
|
|
return AMEM, nil
|
|
case ANOEQ:
|
|
return ANOEQ, bad
|
|
}
|
|
|
|
switch t.NumElem() {
|
|
case 0:
|
|
// We checked above that the element type is comparable.
|
|
return AMEM, nil
|
|
case 1:
|
|
// Single-element array is same as its lone element.
|
|
return a, nil
|
|
}
|
|
|
|
return ASPECIAL, nil
|
|
|
|
case TSTRUCT:
|
|
fields := t.FieldSlice()
|
|
|
|
// One-field struct is same as that one field alone.
|
|
if len(fields) == 1 && !fields[0].Sym.IsBlank() {
|
|
return algtype1(fields[0].Type)
|
|
}
|
|
|
|
ret := AMEM
|
|
for i, f := range fields {
|
|
// All fields must be comparable.
|
|
a, bad := algtype1(f.Type)
|
|
if a == ANOEQ {
|
|
return ANOEQ, bad
|
|
}
|
|
|
|
// Blank fields, padded fields, fields with non-memory
|
|
// equality need special compare.
|
|
if a != AMEM || f.Sym.IsBlank() || ispaddedfield(t, i) {
|
|
ret = ASPECIAL
|
|
}
|
|
}
|
|
|
|
return ret, nil
|
|
}
|
|
|
|
Fatalf("algtype1: unexpected type %v", t)
|
|
return 0, nil
|
|
}
|
|
|
|
// genhash returns a symbol which is the closure used to compute
|
|
// the hash of a value of type t.
|
|
// Note: the generated function must match runtime.typehash exactly.
|
|
func genhash(t *types.Type) *obj.LSym {
|
|
switch algtype(t) {
|
|
default:
|
|
// genhash is only called for types that have equality
|
|
Fatalf("genhash %v", t)
|
|
case AMEM0:
|
|
return sysClosure("memhash0")
|
|
case AMEM8:
|
|
return sysClosure("memhash8")
|
|
case AMEM16:
|
|
return sysClosure("memhash16")
|
|
case AMEM32:
|
|
return sysClosure("memhash32")
|
|
case AMEM64:
|
|
return sysClosure("memhash64")
|
|
case AMEM128:
|
|
return sysClosure("memhash128")
|
|
case ASTRING:
|
|
return sysClosure("strhash")
|
|
case AINTER:
|
|
return sysClosure("interhash")
|
|
case ANILINTER:
|
|
return sysClosure("nilinterhash")
|
|
case AFLOAT32:
|
|
return sysClosure("f32hash")
|
|
case AFLOAT64:
|
|
return sysClosure("f64hash")
|
|
case ACPLX64:
|
|
return sysClosure("c64hash")
|
|
case ACPLX128:
|
|
return sysClosure("c128hash")
|
|
case AMEM:
|
|
// For other sizes of plain memory, we build a closure
|
|
// that calls memhash_varlen. The size of the memory is
|
|
// encoded in the first slot of the closure.
|
|
closure := typeLookup(fmt.Sprintf(".hashfunc%d", t.Width)).Linksym()
|
|
if len(closure.P) > 0 { // already generated
|
|
return closure
|
|
}
|
|
if memhashvarlen == nil {
|
|
memhashvarlen = sysfunc("memhash_varlen")
|
|
}
|
|
ot := 0
|
|
ot = dsymptr(closure, ot, memhashvarlen, 0)
|
|
ot = duintptr(closure, ot, uint64(t.Width)) // size encoded in closure
|
|
ggloblsym(closure, int32(ot), obj.DUPOK|obj.RODATA)
|
|
return closure
|
|
case ASPECIAL:
|
|
break
|
|
}
|
|
|
|
closure := typesymprefix(".hashfunc", t).Linksym()
|
|
if len(closure.P) > 0 { // already generated
|
|
return closure
|
|
}
|
|
|
|
// Generate hash functions for subtypes.
|
|
// There are cases where we might not use these hashes,
|
|
// but in that case they will get dead-code eliminated.
|
|
// (And the closure generated by genhash will also get
|
|
// dead-code eliminated, as we call the subtype hashers
|
|
// directly.)
|
|
switch t.Etype {
|
|
case types.TARRAY:
|
|
genhash(t.Elem())
|
|
case types.TSTRUCT:
|
|
for _, f := range t.FieldSlice() {
|
|
genhash(f.Type)
|
|
}
|
|
}
|
|
|
|
sym := typesymprefix(".hash", t)
|
|
if Debug['r'] != 0 {
|
|
fmt.Printf("genhash %v %v %v\n", closure, sym, t)
|
|
}
|
|
|
|
lineno = autogeneratedPos // less confusing than end of input
|
|
dclcontext = PEXTERN
|
|
|
|
// func sym(p *T, h uintptr) uintptr
|
|
tfn := nod(OTFUNC, nil, nil)
|
|
tfn.List.Set2(
|
|
namedfield("p", types.NewPtr(t)),
|
|
namedfield("h", types.Types[TUINTPTR]),
|
|
)
|
|
tfn.Rlist.Set1(anonfield(types.Types[TUINTPTR]))
|
|
|
|
fn := dclfunc(sym, tfn)
|
|
np := asNode(tfn.Type.Params().Field(0).Nname)
|
|
nh := asNode(tfn.Type.Params().Field(1).Nname)
|
|
|
|
switch t.Etype {
|
|
case types.TARRAY:
|
|
// An array of pure memory would be handled by the
|
|
// standard algorithm, so the element type must not be
|
|
// pure memory.
|
|
hashel := hashfor(t.Elem())
|
|
|
|
n := nod(ORANGE, nil, nod(ODEREF, np, nil))
|
|
ni := newname(lookup("i"))
|
|
ni.Type = types.Types[TINT]
|
|
n.List.Set1(ni)
|
|
n.SetColas(true)
|
|
colasdefn(n.List.Slice(), n)
|
|
ni = n.List.First()
|
|
|
|
// h = hashel(&p[i], h)
|
|
call := nod(OCALL, hashel, nil)
|
|
|
|
nx := nod(OINDEX, np, ni)
|
|
nx.SetBounded(true)
|
|
na := nod(OADDR, nx, nil)
|
|
call.List.Append(na)
|
|
call.List.Append(nh)
|
|
n.Nbody.Append(nod(OAS, nh, call))
|
|
|
|
fn.Nbody.Append(n)
|
|
|
|
case types.TSTRUCT:
|
|
// Walk the struct using memhash for runs of AMEM
|
|
// and calling specific hash functions for the others.
|
|
for i, fields := 0, t.FieldSlice(); i < len(fields); {
|
|
f := fields[i]
|
|
|
|
// Skip blank fields.
|
|
if f.Sym.IsBlank() {
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Hash non-memory fields with appropriate hash function.
|
|
if !IsRegularMemory(f.Type) {
|
|
hashel := hashfor(f.Type)
|
|
call := nod(OCALL, hashel, nil)
|
|
nx := nodSym(OXDOT, np, f.Sym) // TODO: fields from other packages?
|
|
na := nod(OADDR, nx, nil)
|
|
call.List.Append(na)
|
|
call.List.Append(nh)
|
|
fn.Nbody.Append(nod(OAS, nh, call))
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Otherwise, hash a maximal length run of raw memory.
|
|
size, next := memrun(t, i)
|
|
|
|
// h = hashel(&p.first, size, h)
|
|
hashel := hashmem(f.Type)
|
|
call := nod(OCALL, hashel, nil)
|
|
nx := nodSym(OXDOT, np, f.Sym) // TODO: fields from other packages?
|
|
na := nod(OADDR, nx, nil)
|
|
call.List.Append(na)
|
|
call.List.Append(nh)
|
|
call.List.Append(nodintconst(size))
|
|
fn.Nbody.Append(nod(OAS, nh, call))
|
|
|
|
i = next
|
|
}
|
|
}
|
|
|
|
r := nod(ORETURN, nil, nil)
|
|
r.List.Append(nh)
|
|
fn.Nbody.Append(r)
|
|
|
|
if Debug['r'] != 0 {
|
|
dumplist("genhash body", fn.Nbody)
|
|
}
|
|
|
|
funcbody()
|
|
|
|
fn.Func.SetDupok(true)
|
|
fn = typecheck(fn, ctxStmt)
|
|
|
|
Curfn = fn
|
|
typecheckslice(fn.Nbody.Slice(), ctxStmt)
|
|
Curfn = nil
|
|
|
|
if debug_dclstack != 0 {
|
|
testdclstack()
|
|
}
|
|
|
|
fn.Func.SetNilCheckDisabled(true)
|
|
funccompile(fn)
|
|
|
|
// Build closure. It doesn't close over any variables, so
|
|
// it contains just the function pointer.
|
|
dsymptr(closure, 0, sym.Linksym(), 0)
|
|
ggloblsym(closure, int32(Widthptr), obj.DUPOK|obj.RODATA)
|
|
|
|
return closure
|
|
}
|
|
|
|
func hashfor(t *types.Type) *Node {
|
|
var sym *types.Sym
|
|
|
|
switch a, _ := algtype1(t); a {
|
|
case AMEM:
|
|
Fatalf("hashfor with AMEM type")
|
|
case AINTER:
|
|
sym = Runtimepkg.Lookup("interhash")
|
|
case ANILINTER:
|
|
sym = Runtimepkg.Lookup("nilinterhash")
|
|
case ASTRING:
|
|
sym = Runtimepkg.Lookup("strhash")
|
|
case AFLOAT32:
|
|
sym = Runtimepkg.Lookup("f32hash")
|
|
case AFLOAT64:
|
|
sym = Runtimepkg.Lookup("f64hash")
|
|
case ACPLX64:
|
|
sym = Runtimepkg.Lookup("c64hash")
|
|
case ACPLX128:
|
|
sym = Runtimepkg.Lookup("c128hash")
|
|
default:
|
|
// Note: the caller of hashfor ensured that this symbol
|
|
// exists and has a body by calling genhash for t.
|
|
sym = typesymprefix(".hash", t)
|
|
}
|
|
|
|
n := newname(sym)
|
|
n.SetClass(PFUNC)
|
|
n.Sym.SetFunc(true)
|
|
n.Type = functype(nil, []*Node{
|
|
anonfield(types.NewPtr(t)),
|
|
anonfield(types.Types[TUINTPTR]),
|
|
}, []*Node{
|
|
anonfield(types.Types[TUINTPTR]),
|
|
})
|
|
return n
|
|
}
|
|
|
|
// sysClosure returns a closure which will call the
|
|
// given runtime function (with no closed-over variables).
|
|
func sysClosure(name string) *obj.LSym {
|
|
s := sysvar(name + "·f")
|
|
if len(s.P) == 0 {
|
|
f := sysfunc(name)
|
|
dsymptr(s, 0, f, 0)
|
|
ggloblsym(s, int32(Widthptr), obj.DUPOK|obj.RODATA)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// geneq returns a symbol which is the closure used to compute
|
|
// equality for two objects of type t.
|
|
func geneq(t *types.Type) *obj.LSym {
|
|
switch algtype(t) {
|
|
case ANOEQ:
|
|
// The runtime will panic if it tries to compare
|
|
// a type with a nil equality function.
|
|
return nil
|
|
case AMEM0:
|
|
return sysClosure("memequal0")
|
|
case AMEM8:
|
|
return sysClosure("memequal8")
|
|
case AMEM16:
|
|
return sysClosure("memequal16")
|
|
case AMEM32:
|
|
return sysClosure("memequal32")
|
|
case AMEM64:
|
|
return sysClosure("memequal64")
|
|
case AMEM128:
|
|
return sysClosure("memequal128")
|
|
case ASTRING:
|
|
return sysClosure("strequal")
|
|
case AINTER:
|
|
return sysClosure("interequal")
|
|
case ANILINTER:
|
|
return sysClosure("nilinterequal")
|
|
case AFLOAT32:
|
|
return sysClosure("f32equal")
|
|
case AFLOAT64:
|
|
return sysClosure("f64equal")
|
|
case ACPLX64:
|
|
return sysClosure("c64equal")
|
|
case ACPLX128:
|
|
return sysClosure("c128equal")
|
|
case AMEM:
|
|
// make equality closure. The size of the type
|
|
// is encoded in the closure.
|
|
closure := typeLookup(fmt.Sprintf(".eqfunc%d", t.Width)).Linksym()
|
|
if len(closure.P) != 0 {
|
|
return closure
|
|
}
|
|
if memequalvarlen == nil {
|
|
memequalvarlen = sysvar("memequal_varlen") // asm func
|
|
}
|
|
ot := 0
|
|
ot = dsymptr(closure, ot, memequalvarlen, 0)
|
|
ot = duintptr(closure, ot, uint64(t.Width))
|
|
ggloblsym(closure, int32(ot), obj.DUPOK|obj.RODATA)
|
|
return closure
|
|
case ASPECIAL:
|
|
break
|
|
}
|
|
|
|
closure := typesymprefix(".eqfunc", t).Linksym()
|
|
if len(closure.P) > 0 { // already generated
|
|
return closure
|
|
}
|
|
sym := typesymprefix(".eq", t)
|
|
if Debug['r'] != 0 {
|
|
fmt.Printf("geneq %v\n", t)
|
|
}
|
|
|
|
// Autogenerate code for equality of structs and arrays.
|
|
|
|
lineno = autogeneratedPos // less confusing than end of input
|
|
dclcontext = PEXTERN
|
|
|
|
// func sym(p, q *T) bool
|
|
tfn := nod(OTFUNC, nil, nil)
|
|
tfn.List.Set2(
|
|
namedfield("p", types.NewPtr(t)),
|
|
namedfield("q", types.NewPtr(t)),
|
|
)
|
|
tfn.Rlist.Set1(namedfield("r", types.Types[TBOOL]))
|
|
|
|
fn := dclfunc(sym, tfn)
|
|
np := asNode(tfn.Type.Params().Field(0).Nname)
|
|
nq := asNode(tfn.Type.Params().Field(1).Nname)
|
|
|
|
// We reach here only for types that have equality but
|
|
// cannot be handled by the standard algorithms,
|
|
// so t must be either an array or a struct.
|
|
switch t.Etype {
|
|
default:
|
|
Fatalf("geneq %v", t)
|
|
|
|
case TARRAY:
|
|
nelem := t.NumElem()
|
|
|
|
// checkAll generates code to check the equality of all array elements.
|
|
// If unroll is greater than nelem, checkAll generates:
|
|
//
|
|
// if eq(p[0], q[0]) && eq(p[1], q[1]) && ... {
|
|
// } else {
|
|
// return
|
|
// }
|
|
//
|
|
// And so on.
|
|
//
|
|
// Otherwise it generates:
|
|
//
|
|
// for i := 0; i < nelem; i++ {
|
|
// if eq(p[i], q[i]) {
|
|
// } else {
|
|
// return
|
|
// }
|
|
// }
|
|
//
|
|
// TODO(josharian): consider doing some loop unrolling
|
|
// for larger nelem as well, processing a few elements at a time in a loop.
|
|
checkAll := func(unroll int64, eq func(pi, qi *Node) *Node) {
|
|
// checkIdx generates a node to check for equality at index i.
|
|
checkIdx := func(i *Node) *Node {
|
|
// pi := p[i]
|
|
pi := nod(OINDEX, np, i)
|
|
pi.SetBounded(true)
|
|
pi.Type = t.Elem()
|
|
// qi := q[i]
|
|
qi := nod(OINDEX, nq, i)
|
|
qi.SetBounded(true)
|
|
qi.Type = t.Elem()
|
|
return eq(pi, qi)
|
|
}
|
|
|
|
if nelem <= unroll {
|
|
// Generate a series of checks.
|
|
var cond *Node
|
|
for i := int64(0); i < nelem; i++ {
|
|
c := nodintconst(i)
|
|
check := checkIdx(c)
|
|
if cond == nil {
|
|
cond = check
|
|
continue
|
|
}
|
|
cond = nod(OANDAND, cond, check)
|
|
}
|
|
nif := nod(OIF, cond, nil)
|
|
nif.Rlist.Append(nod(ORETURN, nil, nil))
|
|
fn.Nbody.Append(nif)
|
|
return
|
|
}
|
|
|
|
// Generate a for loop.
|
|
// for i := 0; i < nelem; i++
|
|
i := temp(types.Types[TINT])
|
|
init := nod(OAS, i, nodintconst(0))
|
|
cond := nod(OLT, i, nodintconst(nelem))
|
|
post := nod(OAS, i, nod(OADD, i, nodintconst(1)))
|
|
loop := nod(OFOR, cond, post)
|
|
loop.Ninit.Append(init)
|
|
// if eq(pi, qi) {} else { return }
|
|
check := checkIdx(i)
|
|
nif := nod(OIF, check, nil)
|
|
nif.Rlist.Append(nod(ORETURN, nil, nil))
|
|
loop.Nbody.Append(nif)
|
|
fn.Nbody.Append(loop)
|
|
}
|
|
|
|
switch t.Elem().Etype {
|
|
case TSTRING:
|
|
// Do two loops. First, check that all the lengths match (cheap).
|
|
// Second, check that all the contents match (expensive).
|
|
// TODO: when the array size is small, unroll the length match checks.
|
|
checkAll(3, func(pi, qi *Node) *Node {
|
|
// Compare lengths.
|
|
eqlen, _ := eqstring(pi, qi)
|
|
return eqlen
|
|
})
|
|
checkAll(1, func(pi, qi *Node) *Node {
|
|
// Compare contents.
|
|
_, eqmem := eqstring(pi, qi)
|
|
return eqmem
|
|
})
|
|
case TFLOAT32, TFLOAT64:
|
|
checkAll(2, func(pi, qi *Node) *Node {
|
|
// p[i] == q[i]
|
|
return nod(OEQ, pi, qi)
|
|
})
|
|
// TODO: pick apart structs, do them piecemeal too
|
|
default:
|
|
checkAll(1, func(pi, qi *Node) *Node {
|
|
// p[i] == q[i]
|
|
return nod(OEQ, pi, qi)
|
|
})
|
|
}
|
|
// return true
|
|
ret := nod(ORETURN, nil, nil)
|
|
ret.List.Append(nodbool(true))
|
|
fn.Nbody.Append(ret)
|
|
|
|
case TSTRUCT:
|
|
// Build a list of conditions to satisfy.
|
|
// The conditions are a list-of-lists. Conditions are reorderable
|
|
// within each inner list. The outer lists must be evaluated in order.
|
|
// Even within each inner list, track their order so that we can preserve
|
|
// aspects of that order. (TODO: latter part needed?)
|
|
type nodeIdx struct {
|
|
n *Node
|
|
idx int
|
|
}
|
|
var conds [][]nodeIdx
|
|
conds = append(conds, []nodeIdx{})
|
|
and := func(n *Node) {
|
|
i := len(conds) - 1
|
|
conds[i] = append(conds[i], nodeIdx{n: n, idx: len(conds[i])})
|
|
}
|
|
|
|
// Walk the struct using memequal for runs of AMEM
|
|
// and calling specific equality tests for the others.
|
|
for i, fields := 0, t.FieldSlice(); i < len(fields); {
|
|
f := fields[i]
|
|
|
|
// Skip blank-named fields.
|
|
if f.Sym.IsBlank() {
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Compare non-memory fields with field equality.
|
|
if !IsRegularMemory(f.Type) {
|
|
if EqCanPanic(f.Type) {
|
|
// Enforce ordering by starting a new set of reorderable conditions.
|
|
conds = append(conds, []nodeIdx{})
|
|
}
|
|
p := nodSym(OXDOT, np, f.Sym)
|
|
q := nodSym(OXDOT, nq, f.Sym)
|
|
switch {
|
|
case f.Type.IsString():
|
|
eqlen, eqmem := eqstring(p, q)
|
|
and(eqlen)
|
|
and(eqmem)
|
|
default:
|
|
and(nod(OEQ, p, q))
|
|
}
|
|
if EqCanPanic(f.Type) {
|
|
// Also enforce ordering after something that can panic.
|
|
conds = append(conds, []nodeIdx{})
|
|
}
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Find maximal length run of memory-only fields.
|
|
size, next := memrun(t, i)
|
|
|
|
// TODO(rsc): All the calls to newname are wrong for
|
|
// cross-package unexported fields.
|
|
if s := fields[i:next]; len(s) <= 2 {
|
|
// Two or fewer fields: use plain field equality.
|
|
for _, f := range s {
|
|
and(eqfield(np, nq, f.Sym))
|
|
}
|
|
} else {
|
|
// More than two fields: use memequal.
|
|
and(eqmem(np, nq, f.Sym, size))
|
|
}
|
|
i = next
|
|
}
|
|
|
|
// Sort conditions to put runtime calls last.
|
|
// Preserve the rest of the ordering.
|
|
var flatConds []nodeIdx
|
|
for _, c := range conds {
|
|
sort.SliceStable(c, func(i, j int) bool {
|
|
x, y := c[i], c[j]
|
|
if (x.n.Op != OCALL) == (y.n.Op != OCALL) {
|
|
return x.idx < y.idx
|
|
}
|
|
return x.n.Op != OCALL
|
|
})
|
|
flatConds = append(flatConds, c...)
|
|
}
|
|
|
|
var cond *Node
|
|
if len(flatConds) == 0 {
|
|
cond = nodbool(true)
|
|
} else {
|
|
cond = flatConds[0].n
|
|
for _, c := range flatConds[1:] {
|
|
cond = nod(OANDAND, cond, c.n)
|
|
}
|
|
}
|
|
|
|
ret := nod(ORETURN, nil, nil)
|
|
ret.List.Append(cond)
|
|
fn.Nbody.Append(ret)
|
|
}
|
|
|
|
if Debug['r'] != 0 {
|
|
dumplist("geneq body", fn.Nbody)
|
|
}
|
|
|
|
funcbody()
|
|
|
|
fn.Func.SetDupok(true)
|
|
fn = typecheck(fn, ctxStmt)
|
|
|
|
Curfn = fn
|
|
typecheckslice(fn.Nbody.Slice(), ctxStmt)
|
|
Curfn = nil
|
|
|
|
if debug_dclstack != 0 {
|
|
testdclstack()
|
|
}
|
|
|
|
// Disable checknils while compiling this code.
|
|
// We are comparing a struct or an array,
|
|
// neither of which can be nil, and our comparisons
|
|
// are shallow.
|
|
fn.Func.SetNilCheckDisabled(true)
|
|
funccompile(fn)
|
|
|
|
// Generate a closure which points at the function we just generated.
|
|
dsymptr(closure, 0, sym.Linksym(), 0)
|
|
ggloblsym(closure, int32(Widthptr), obj.DUPOK|obj.RODATA)
|
|
return closure
|
|
}
|
|
|
|
// eqfield returns the node
|
|
// p.field == q.field
|
|
func eqfield(p *Node, q *Node, field *types.Sym) *Node {
|
|
nx := nodSym(OXDOT, p, field)
|
|
ny := nodSym(OXDOT, q, field)
|
|
ne := nod(OEQ, nx, ny)
|
|
return ne
|
|
}
|
|
|
|
// eqstring returns the nodes
|
|
// len(s) == len(t)
|
|
// and
|
|
// memequal(s.ptr, t.ptr, len(s))
|
|
// which can be used to construct string equality comparison.
|
|
// eqlen must be evaluated before eqmem, and shortcircuiting is required.
|
|
func eqstring(s, t *Node) (eqlen, eqmem *Node) {
|
|
s = conv(s, types.Types[TSTRING])
|
|
t = conv(t, types.Types[TSTRING])
|
|
sptr := nod(OSPTR, s, nil)
|
|
tptr := nod(OSPTR, t, nil)
|
|
slen := conv(nod(OLEN, s, nil), types.Types[TUINTPTR])
|
|
tlen := conv(nod(OLEN, t, nil), types.Types[TUINTPTR])
|
|
|
|
fn := syslook("memequal")
|
|
fn = substArgTypes(fn, types.Types[TUINT8], types.Types[TUINT8])
|
|
call := nod(OCALL, fn, nil)
|
|
call.List.Append(sptr, tptr, slen.copy())
|
|
call = typecheck(call, ctxExpr|ctxMultiOK)
|
|
|
|
cmp := nod(OEQ, slen, tlen)
|
|
cmp = typecheck(cmp, ctxExpr)
|
|
cmp.Type = types.Types[TBOOL]
|
|
return cmp, call
|
|
}
|
|
|
|
// eqinterface returns the nodes
|
|
// s.tab == t.tab (or s.typ == t.typ, as appropriate)
|
|
// and
|
|
// ifaceeq(s.tab, s.data, t.data) (or efaceeq(s.typ, s.data, t.data), as appropriate)
|
|
// which can be used to construct interface equality comparison.
|
|
// eqtab must be evaluated before eqdata, and shortcircuiting is required.
|
|
func eqinterface(s, t *Node) (eqtab, eqdata *Node) {
|
|
if !types.Identical(s.Type, t.Type) {
|
|
Fatalf("eqinterface %v %v", s.Type, t.Type)
|
|
}
|
|
// func ifaceeq(tab *uintptr, x, y unsafe.Pointer) (ret bool)
|
|
// func efaceeq(typ *uintptr, x, y unsafe.Pointer) (ret bool)
|
|
var fn *Node
|
|
if s.Type.IsEmptyInterface() {
|
|
fn = syslook("efaceeq")
|
|
} else {
|
|
fn = syslook("ifaceeq")
|
|
}
|
|
|
|
stab := nod(OITAB, s, nil)
|
|
ttab := nod(OITAB, t, nil)
|
|
sdata := nod(OIDATA, s, nil)
|
|
tdata := nod(OIDATA, t, nil)
|
|
sdata.Type = types.Types[TUNSAFEPTR]
|
|
tdata.Type = types.Types[TUNSAFEPTR]
|
|
sdata.SetTypecheck(1)
|
|
tdata.SetTypecheck(1)
|
|
|
|
call := nod(OCALL, fn, nil)
|
|
call.List.Append(stab, sdata, tdata)
|
|
call = typecheck(call, ctxExpr|ctxMultiOK)
|
|
|
|
cmp := nod(OEQ, stab, ttab)
|
|
cmp = typecheck(cmp, ctxExpr)
|
|
cmp.Type = types.Types[TBOOL]
|
|
return cmp, call
|
|
}
|
|
|
|
// eqmem returns the node
|
|
// memequal(&p.field, &q.field [, size])
|
|
func eqmem(p *Node, q *Node, field *types.Sym, size int64) *Node {
|
|
nx := nod(OADDR, nodSym(OXDOT, p, field), nil)
|
|
ny := nod(OADDR, nodSym(OXDOT, q, field), nil)
|
|
nx = typecheck(nx, ctxExpr)
|
|
ny = typecheck(ny, ctxExpr)
|
|
|
|
fn, needsize := eqmemfunc(size, nx.Type.Elem())
|
|
call := nod(OCALL, fn, nil)
|
|
call.List.Append(nx)
|
|
call.List.Append(ny)
|
|
if needsize {
|
|
call.List.Append(nodintconst(size))
|
|
}
|
|
|
|
return call
|
|
}
|
|
|
|
func eqmemfunc(size int64, t *types.Type) (fn *Node, needsize bool) {
|
|
switch size {
|
|
default:
|
|
fn = syslook("memequal")
|
|
needsize = true
|
|
case 1, 2, 4, 8, 16:
|
|
buf := fmt.Sprintf("memequal%d", int(size)*8)
|
|
fn = syslook(buf)
|
|
}
|
|
|
|
fn = substArgTypes(fn, t, t)
|
|
return fn, needsize
|
|
}
|
|
|
|
// memrun finds runs of struct fields for which memory-only algs are appropriate.
|
|
// t is the parent struct type, and start is the field index at which to start the run.
|
|
// size is the length in bytes of the memory included in the run.
|
|
// next is the index just after the end of the memory run.
|
|
func memrun(t *types.Type, start int) (size int64, next int) {
|
|
next = start
|
|
for {
|
|
next++
|
|
if next == t.NumFields() {
|
|
break
|
|
}
|
|
// Stop run after a padded field.
|
|
if ispaddedfield(t, next-1) {
|
|
break
|
|
}
|
|
// Also, stop before a blank or non-memory field.
|
|
if f := t.Field(next); f.Sym.IsBlank() || !IsRegularMemory(f.Type) {
|
|
break
|
|
}
|
|
}
|
|
return t.Field(next-1).End() - t.Field(start).Offset, next
|
|
}
|
|
|
|
// ispaddedfield reports whether the i'th field of struct type t is followed
|
|
// by padding.
|
|
func ispaddedfield(t *types.Type, i int) bool {
|
|
if !t.IsStruct() {
|
|
Fatalf("ispaddedfield called non-struct %v", t)
|
|
}
|
|
end := t.Width
|
|
if i+1 < t.NumFields() {
|
|
end = t.Field(i + 1).Offset
|
|
}
|
|
return t.Field(i).End() != end
|
|
}
|