mirror of https://github.com/golang/go.git
438 lines
12 KiB
Go
438 lines
12 KiB
Go
// Copyright 2018 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssa
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/types"
|
|
"fmt"
|
|
)
|
|
|
|
type indVarFlags uint8
|
|
|
|
const (
|
|
indVarMinExc indVarFlags = 1 << iota // minimum value is exclusive (default: inclusive)
|
|
indVarMaxInc // maximum value is inclusive (default: exclusive)
|
|
indVarCountDown // if set the iteration starts at max and count towards min (default: min towards max)
|
|
)
|
|
|
|
type indVar struct {
|
|
ind *Value // induction variable
|
|
nxt *Value // the incremented variable
|
|
min *Value // minimum value, inclusive/exclusive depends on flags
|
|
max *Value // maximum value, inclusive/exclusive depends on flags
|
|
entry *Block // entry block in the loop.
|
|
flags indVarFlags
|
|
// Invariant: for all blocks strictly dominated by entry:
|
|
// min <= ind < max [if flags == 0]
|
|
// min < ind < max [if flags == indVarMinExc]
|
|
// min <= ind <= max [if flags == indVarMaxInc]
|
|
// min < ind <= max [if flags == indVarMinExc|indVarMaxInc]
|
|
}
|
|
|
|
// parseIndVar checks whether the SSA value passed as argument is a valid induction
|
|
// variable, and, if so, extracts:
|
|
// - the minimum bound
|
|
// - the increment value
|
|
// - the "next" value (SSA value that is Phi'd into the induction variable every loop)
|
|
//
|
|
// Currently, we detect induction variables that match (Phi min nxt),
|
|
// with nxt being (Add inc ind).
|
|
// If it can't parse the induction variable correctly, it returns (nil, nil, nil).
|
|
func parseIndVar(ind *Value) (min, inc, nxt *Value) {
|
|
if ind.Op != OpPhi {
|
|
return
|
|
}
|
|
|
|
if n := ind.Args[0]; (n.Op == OpAdd64 || n.Op == OpAdd32 || n.Op == OpAdd16 || n.Op == OpAdd8) && (n.Args[0] == ind || n.Args[1] == ind) {
|
|
min, nxt = ind.Args[1], n
|
|
} else if n := ind.Args[1]; (n.Op == OpAdd64 || n.Op == OpAdd32 || n.Op == OpAdd16 || n.Op == OpAdd8) && (n.Args[0] == ind || n.Args[1] == ind) {
|
|
min, nxt = ind.Args[0], n
|
|
} else {
|
|
// Not a recognized induction variable.
|
|
return
|
|
}
|
|
|
|
if nxt.Args[0] == ind { // nxt = ind + inc
|
|
inc = nxt.Args[1]
|
|
} else if nxt.Args[1] == ind { // nxt = inc + ind
|
|
inc = nxt.Args[0]
|
|
} else {
|
|
panic("unreachable") // one of the cases must be true from the above.
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// findIndVar finds induction variables in a function.
|
|
//
|
|
// Look for variables and blocks that satisfy the following
|
|
//
|
|
// loop:
|
|
// ind = (Phi min nxt),
|
|
// if ind < max
|
|
// then goto enter_loop
|
|
// else goto exit_loop
|
|
//
|
|
// enter_loop:
|
|
// do something
|
|
// nxt = inc + ind
|
|
// goto loop
|
|
//
|
|
// exit_loop:
|
|
func findIndVar(f *Func) []indVar {
|
|
var iv []indVar
|
|
sdom := f.Sdom()
|
|
|
|
for _, b := range f.Blocks {
|
|
if b.Kind != BlockIf || len(b.Preds) != 2 {
|
|
continue
|
|
}
|
|
|
|
var ind *Value // induction variable
|
|
var init *Value // starting value
|
|
var limit *Value // ending value
|
|
|
|
// Check that the control if it either ind </<= limit or limit </<= ind.
|
|
// TODO: Handle unsigned comparisons?
|
|
c := b.Controls[0]
|
|
inclusive := false
|
|
switch c.Op {
|
|
case OpLeq64, OpLeq32, OpLeq16, OpLeq8:
|
|
inclusive = true
|
|
fallthrough
|
|
case OpLess64, OpLess32, OpLess16, OpLess8:
|
|
ind, limit = c.Args[0], c.Args[1]
|
|
default:
|
|
continue
|
|
}
|
|
|
|
// See if this is really an induction variable
|
|
less := true
|
|
init, inc, nxt := parseIndVar(ind)
|
|
if init == nil {
|
|
// We failed to parse the induction variable. Before punting, we want to check
|
|
// whether the control op was written with the induction variable on the RHS
|
|
// instead of the LHS. This happens for the downwards case, like:
|
|
// for i := len(n)-1; i >= 0; i--
|
|
init, inc, nxt = parseIndVar(limit)
|
|
if init == nil {
|
|
// No recognized induction variable on either operand
|
|
continue
|
|
}
|
|
|
|
// Ok, the arguments were reversed. Swap them, and remember that we're
|
|
// looking at an ind >/>= loop (so the induction must be decrementing).
|
|
ind, limit = limit, ind
|
|
less = false
|
|
}
|
|
|
|
if ind.Block != b {
|
|
// TODO: Could be extended to include disjointed loop headers.
|
|
// I don't think this is causing missed optimizations in real world code often.
|
|
// See https://go.dev/issue/63955
|
|
continue
|
|
}
|
|
|
|
// Expect the increment to be a nonzero constant.
|
|
if !inc.isGenericIntConst() {
|
|
continue
|
|
}
|
|
step := inc.AuxInt
|
|
if step == 0 {
|
|
continue
|
|
}
|
|
|
|
// Increment sign must match comparison direction.
|
|
// When incrementing, the termination comparison must be ind </<= limit.
|
|
// When decrementing, the termination comparison must be ind >/>= limit.
|
|
// See issue 26116.
|
|
if step > 0 && !less {
|
|
continue
|
|
}
|
|
if step < 0 && less {
|
|
continue
|
|
}
|
|
|
|
// Up to now we extracted the induction variable (ind),
|
|
// the increment delta (inc), the temporary sum (nxt),
|
|
// the initial value (init) and the limiting value (limit).
|
|
//
|
|
// We also know that ind has the form (Phi init nxt) where
|
|
// nxt is (Add inc nxt) which means: 1) inc dominates nxt
|
|
// and 2) there is a loop starting at inc and containing nxt.
|
|
//
|
|
// We need to prove that the induction variable is incremented
|
|
// only when it's smaller than the limiting value.
|
|
// Two conditions must happen listed below to accept ind
|
|
// as an induction variable.
|
|
|
|
// First condition: loop entry has a single predecessor, which
|
|
// is the header block. This implies that b.Succs[0] is
|
|
// reached iff ind < limit.
|
|
if len(b.Succs[0].b.Preds) != 1 {
|
|
// b.Succs[1] must exit the loop.
|
|
continue
|
|
}
|
|
|
|
// Second condition: b.Succs[0] dominates nxt so that
|
|
// nxt is computed when inc < limit.
|
|
if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) {
|
|
// inc+ind can only be reached through the branch that enters the loop.
|
|
continue
|
|
}
|
|
|
|
// Check for overflow/underflow. We need to make sure that inc never causes
|
|
// the induction variable to wrap around.
|
|
// We use a function wrapper here for easy return true / return false / keep going logic.
|
|
// This function returns true if the increment will never overflow/underflow.
|
|
ok := func() bool {
|
|
if step > 0 {
|
|
if limit.isGenericIntConst() {
|
|
// Figure out the actual largest value.
|
|
v := limit.AuxInt
|
|
if !inclusive {
|
|
if v == minSignedValue(limit.Type) {
|
|
return false // < minint is never satisfiable.
|
|
}
|
|
v--
|
|
}
|
|
if init.isGenericIntConst() {
|
|
// Use stride to compute a better lower limit.
|
|
if init.AuxInt > v {
|
|
return false
|
|
}
|
|
v = addU(init.AuxInt, diff(v, init.AuxInt)/uint64(step)*uint64(step))
|
|
}
|
|
if addWillOverflow(v, step) {
|
|
return false
|
|
}
|
|
if inclusive && v != limit.AuxInt || !inclusive && v+1 != limit.AuxInt {
|
|
// We know a better limit than the programmer did. Use our limit instead.
|
|
limit = f.constVal(limit.Op, limit.Type, v, true)
|
|
inclusive = true
|
|
}
|
|
return true
|
|
}
|
|
if step == 1 && !inclusive {
|
|
// Can't overflow because maxint is never a possible value.
|
|
return true
|
|
}
|
|
// If the limit is not a constant, check to see if it is a
|
|
// negative offset from a known non-negative value.
|
|
knn, k := findKNN(limit)
|
|
if knn == nil || k < 0 {
|
|
return false
|
|
}
|
|
// limit == (something nonnegative) - k. That subtraction can't underflow, so
|
|
// we can trust it.
|
|
if inclusive {
|
|
// ind <= knn - k cannot overflow if step is at most k
|
|
return step <= k
|
|
}
|
|
// ind < knn - k cannot overflow if step is at most k+1
|
|
return step <= k+1 && k != maxSignedValue(limit.Type)
|
|
} else { // step < 0
|
|
if limit.Op == OpConst64 {
|
|
// Figure out the actual smallest value.
|
|
v := limit.AuxInt
|
|
if !inclusive {
|
|
if v == maxSignedValue(limit.Type) {
|
|
return false // > maxint is never satisfiable.
|
|
}
|
|
v++
|
|
}
|
|
if init.isGenericIntConst() {
|
|
// Use stride to compute a better lower limit.
|
|
if init.AuxInt < v {
|
|
return false
|
|
}
|
|
v = subU(init.AuxInt, diff(init.AuxInt, v)/uint64(-step)*uint64(-step))
|
|
}
|
|
if subWillUnderflow(v, -step) {
|
|
return false
|
|
}
|
|
if inclusive && v != limit.AuxInt || !inclusive && v-1 != limit.AuxInt {
|
|
// We know a better limit than the programmer did. Use our limit instead.
|
|
limit = f.constVal(limit.Op, limit.Type, v, true)
|
|
inclusive = true
|
|
}
|
|
return true
|
|
}
|
|
if step == -1 && !inclusive {
|
|
// Can't underflow because minint is never a possible value.
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
|
|
}
|
|
|
|
if ok() {
|
|
flags := indVarFlags(0)
|
|
var min, max *Value
|
|
if step > 0 {
|
|
min = init
|
|
max = limit
|
|
if inclusive {
|
|
flags |= indVarMaxInc
|
|
}
|
|
} else {
|
|
min = limit
|
|
max = init
|
|
flags |= indVarMaxInc
|
|
if !inclusive {
|
|
flags |= indVarMinExc
|
|
}
|
|
flags |= indVarCountDown
|
|
step = -step
|
|
}
|
|
if f.pass.debug >= 1 {
|
|
printIndVar(b, ind, min, max, step, flags)
|
|
}
|
|
|
|
iv = append(iv, indVar{
|
|
ind: ind,
|
|
nxt: nxt,
|
|
min: min,
|
|
max: max,
|
|
entry: b.Succs[0].b,
|
|
flags: flags,
|
|
})
|
|
b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
|
|
}
|
|
|
|
// TODO: other unrolling idioms
|
|
// for i := 0; i < KNN - KNN % k ; i += k
|
|
// for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
|
|
// for i := 0; i < KNN&(-k) ; i += k // k a power of 2
|
|
}
|
|
|
|
return iv
|
|
}
|
|
|
|
// addWillOverflow reports whether x+y would result in a value more than maxint.
|
|
func addWillOverflow(x, y int64) bool {
|
|
return x+y < x
|
|
}
|
|
|
|
// subWillUnderflow reports whether x-y would result in a value less than minint.
|
|
func subWillUnderflow(x, y int64) bool {
|
|
return x-y > x
|
|
}
|
|
|
|
// diff returns x-y as a uint64. Requires x>=y.
|
|
func diff(x, y int64) uint64 {
|
|
if x < y {
|
|
base.Fatalf("diff %d - %d underflowed", x, y)
|
|
}
|
|
return uint64(x - y)
|
|
}
|
|
|
|
// addU returns x+y. Requires that x+y does not overflow an int64.
|
|
func addU(x int64, y uint64) int64 {
|
|
if y >= 1<<63 {
|
|
if x >= 0 {
|
|
base.Fatalf("addU overflowed %d + %d", x, y)
|
|
}
|
|
x += 1<<63 - 1
|
|
x += 1
|
|
y -= 1 << 63
|
|
}
|
|
if addWillOverflow(x, int64(y)) {
|
|
base.Fatalf("addU overflowed %d + %d", x, y)
|
|
}
|
|
return x + int64(y)
|
|
}
|
|
|
|
// subU returns x-y. Requires that x-y does not underflow an int64.
|
|
func subU(x int64, y uint64) int64 {
|
|
if y >= 1<<63 {
|
|
if x < 0 {
|
|
base.Fatalf("subU underflowed %d - %d", x, y)
|
|
}
|
|
x -= 1<<63 - 1
|
|
x -= 1
|
|
y -= 1 << 63
|
|
}
|
|
if subWillUnderflow(x, int64(y)) {
|
|
base.Fatalf("subU underflowed %d - %d", x, y)
|
|
}
|
|
return x - int64(y)
|
|
}
|
|
|
|
// if v is known to be x - c, where x is known to be nonnegative and c is a
|
|
// constant, return x, c. Otherwise return nil, 0.
|
|
func findKNN(v *Value) (*Value, int64) {
|
|
var x, y *Value
|
|
x = v
|
|
switch v.Op {
|
|
case OpSub64, OpSub32, OpSub16, OpSub8:
|
|
x = v.Args[0]
|
|
y = v.Args[1]
|
|
|
|
case OpAdd64, OpAdd32, OpAdd16, OpAdd8:
|
|
x = v.Args[0]
|
|
y = v.Args[1]
|
|
if x.isGenericIntConst() {
|
|
x, y = y, x
|
|
}
|
|
}
|
|
switch x.Op {
|
|
case OpSliceLen, OpStringLen, OpSliceCap:
|
|
default:
|
|
return nil, 0
|
|
}
|
|
if y == nil {
|
|
return x, 0
|
|
}
|
|
if !y.isGenericIntConst() {
|
|
return nil, 0
|
|
}
|
|
if v.Op == OpAdd64 || v.Op == OpAdd32 || v.Op == OpAdd16 || v.Op == OpAdd8 {
|
|
return x, -y.AuxInt
|
|
}
|
|
return x, y.AuxInt
|
|
}
|
|
|
|
func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) {
|
|
mb1, mb2 := "[", "]"
|
|
if flags&indVarMinExc != 0 {
|
|
mb1 = "("
|
|
}
|
|
if flags&indVarMaxInc == 0 {
|
|
mb2 = ")"
|
|
}
|
|
|
|
mlim1, mlim2 := fmt.Sprint(min.AuxInt), fmt.Sprint(max.AuxInt)
|
|
if !min.isGenericIntConst() {
|
|
if b.Func.pass.debug >= 2 {
|
|
mlim1 = fmt.Sprint(min)
|
|
} else {
|
|
mlim1 = "?"
|
|
}
|
|
}
|
|
if !max.isGenericIntConst() {
|
|
if b.Func.pass.debug >= 2 {
|
|
mlim2 = fmt.Sprint(max)
|
|
} else {
|
|
mlim2 = "?"
|
|
}
|
|
}
|
|
extra := ""
|
|
if b.Func.pass.debug >= 2 {
|
|
extra = fmt.Sprintf(" (%s)", i)
|
|
}
|
|
b.Func.Warnl(b.Pos, "Induction variable: limits %v%v,%v%v, increment %d%s", mb1, mlim1, mlim2, mb2, inc, extra)
|
|
}
|
|
|
|
func minSignedValue(t *types.Type) int64 {
|
|
return -1 << (t.Size()*8 - 1)
|
|
}
|
|
|
|
func maxSignedValue(t *types.Type) int64 {
|
|
return 1<<((t.Size()*8)-1) - 1
|
|
}
|