go/src/cmd/compile/internal/gc/subr.go

1562 lines
40 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/types"
"cmd/internal/src"
"crypto/md5"
"encoding/binary"
"fmt"
"go/constant"
"sort"
"strconv"
"strings"
"sync"
"unicode"
"unicode/utf8"
)
// largeStack is info about a function whose stack frame is too large (rare).
type largeStack struct {
locals int64
args int64
callee int64
pos src.XPos
}
var (
largeStackFramesMu sync.Mutex // protects largeStackFrames
largeStackFrames []largeStack
)
// hasUniquePos reports whether n has a unique position that can be
// used for reporting error messages.
//
// It's primarily used to distinguish references to named objects,
// whose Pos will point back to their declaration position rather than
// their usage position.
func hasUniquePos(n ir.Node) bool {
switch n.Op() {
case ir.ONAME, ir.OPACK:
return false
case ir.OLITERAL, ir.ONIL, ir.OTYPE:
if n.Sym() != nil {
return false
}
}
if !n.Pos().IsKnown() {
if base.Flag.K != 0 {
base.Warn("setlineno: unknown position (line 0)")
}
return false
}
return true
}
func setlineno(n ir.Node) src.XPos {
lno := base.Pos
if n != nil && hasUniquePos(n) {
base.Pos = n.Pos()
}
return lno
}
func lookup(name string) *types.Sym {
return types.LocalPkg.Lookup(name)
}
// lookupN looks up the symbol starting with prefix and ending with
// the decimal n. If prefix is too long, lookupN panics.
func lookupN(prefix string, n int) *types.Sym {
var buf [20]byte // plenty long enough for all current users
copy(buf[:], prefix)
b := strconv.AppendInt(buf[:len(prefix)], int64(n), 10)
return types.LocalPkg.LookupBytes(b)
}
// autolabel generates a new Name node for use with
// an automatically generated label.
// prefix is a short mnemonic (e.g. ".s" for switch)
// to help with debugging.
// It should begin with "." to avoid conflicts with
// user labels.
func autolabel(prefix string) *types.Sym {
if prefix[0] != '.' {
base.Fatalf("autolabel prefix must start with '.', have %q", prefix)
}
fn := Curfn
if Curfn == nil {
base.Fatalf("autolabel outside function")
}
n := fn.Label
fn.Label++
return lookupN(prefix, int(n))
}
// dotImports tracks all PkgNames that have been dot-imported.
var dotImports []*ir.PkgName
// dotImportRefs maps idents introduced by importDot back to the
// ir.PkgName they were dot-imported through.
var dotImportRefs map[*ir.Ident]*ir.PkgName
// find all the exported symbols in package referenced by PkgName,
// and make them available in the current package
func importDot(pack *ir.PkgName) {
if dotImportRefs == nil {
dotImportRefs = make(map[*ir.Ident]*ir.PkgName)
}
opkg := pack.Pkg
for _, s := range opkg.Syms {
if s.Def == nil {
if _, ok := declImporter[s]; !ok {
continue
}
}
if !types.IsExported(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot
continue
}
s1 := lookup(s.Name)
if s1.Def != nil {
pkgerror := fmt.Sprintf("during import %q", opkg.Path)
redeclare(base.Pos, s1, pkgerror)
continue
}
id := ir.NewIdent(src.NoXPos, s)
dotImportRefs[id] = pack
s1.Def = id
s1.Block = 1
}
dotImports = append(dotImports, pack)
}
// checkDotImports reports errors for any unused dot imports.
func checkDotImports() {
for _, pack := range dotImports {
if !pack.Used {
base.ErrorfAt(pack.Pos(), "imported and not used: %q", pack.Pkg.Path)
}
}
// No longer needed; release memory.
dotImports = nil
dotImportRefs = nil
}
// nodAddr returns a node representing &n at base.Pos.
func nodAddr(n ir.Node) *ir.AddrExpr {
return nodAddrAt(base.Pos, n)
}
// nodAddrPos returns a node representing &n at position pos.
func nodAddrAt(pos src.XPos, n ir.Node) *ir.AddrExpr {
return ir.NewAddrExpr(pos, n)
}
// newname returns a new ONAME Node associated with symbol s.
func NewName(s *types.Sym) *ir.Name {
n := ir.NewNameAt(base.Pos, s)
n.Curfn = Curfn
return n
}
// methcmp sorts methods by symbol.
type methcmp []*types.Field
func (x methcmp) Len() int { return len(x) }
func (x methcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x methcmp) Less(i, j int) bool { return x[i].Sym.Less(x[j].Sym) }
func nodintconst(v int64) ir.Node {
return ir.NewLiteral(constant.MakeInt64(v))
}
func nodnil() ir.Node {
n := ir.NewNilExpr(base.Pos)
n.SetType(types.Types[types.TNIL])
return n
}
func nodbool(b bool) ir.Node {
return ir.NewLiteral(constant.MakeBool(b))
}
func nodstr(s string) ir.Node {
return ir.NewLiteral(constant.MakeString(s))
}
func isptrto(t *types.Type, et types.Kind) bool {
if t == nil {
return false
}
if !t.IsPtr() {
return false
}
t = t.Elem()
if t == nil {
return false
}
if t.Kind() != et {
return false
}
return true
}
// methtype returns the underlying type, if any,
// that owns methods with receiver parameter t.
// The result is either a named type or an anonymous struct.
func methtype(t *types.Type) *types.Type {
if t == nil {
return nil
}
// Strip away pointer if it's there.
if t.IsPtr() {
if t.Sym() != nil {
return nil
}
t = t.Elem()
if t == nil {
return nil
}
}
// Must be a named type or anonymous struct.
if t.Sym() == nil && !t.IsStruct() {
return nil
}
// Check types.
if issimple[t.Kind()] {
return t
}
switch t.Kind() {
case types.TARRAY, types.TCHAN, types.TFUNC, types.TMAP, types.TSLICE, types.TSTRING, types.TSTRUCT:
return t
}
return nil
}
// Is type src assignment compatible to type dst?
// If so, return op code to use in conversion.
// If not, return OXXX. In this case, the string return parameter may
// hold a reason why. In all other cases, it'll be the empty string.
func assignop(src, dst *types.Type) (ir.Op, string) {
if src == dst {
return ir.OCONVNOP, ""
}
if src == nil || dst == nil || src.Kind() == types.TFORW || dst.Kind() == types.TFORW || src.Underlying() == nil || dst.Underlying() == nil {
return ir.OXXX, ""
}
// 1. src type is identical to dst.
if types.Identical(src, dst) {
return ir.OCONVNOP, ""
}
// 2. src and dst have identical underlying types
// and either src or dst is not a named type or
// both are empty interface types.
// For assignable but different non-empty interface types,
// we want to recompute the itab. Recomputing the itab ensures
// that itabs are unique (thus an interface with a compile-time
// type I has an itab with interface type I).
if types.Identical(src.Underlying(), dst.Underlying()) {
if src.IsEmptyInterface() {
// Conversion between two empty interfaces
// requires no code.
return ir.OCONVNOP, ""
}
if (src.Sym() == nil || dst.Sym() == nil) && !src.IsInterface() {
// Conversion between two types, at least one unnamed,
// needs no conversion. The exception is nonempty interfaces
// which need to have their itab updated.
return ir.OCONVNOP, ""
}
}
// 3. dst is an interface type and src implements dst.
if dst.IsInterface() && src.Kind() != types.TNIL {
var missing, have *types.Field
var ptr int
if implements(src, dst, &missing, &have, &ptr) {
// Call itabname so that (src, dst)
// gets added to itabs early, which allows
// us to de-virtualize calls through this
// type/interface pair later. See peekitabs in reflect.go
if isdirectiface(src) && !dst.IsEmptyInterface() {
NeedITab(src, dst)
}
return ir.OCONVIFACE, ""
}
// we'll have complained about this method anyway, suppress spurious messages.
if have != nil && have.Sym == missing.Sym && (have.Type.Broke() || missing.Type.Broke()) {
return ir.OCONVIFACE, ""
}
var why string
if isptrto(src, types.TINTER) {
why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src)
} else if have != nil && have.Sym == missing.Sym && have.Nointerface() {
why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym)
} else if have != nil && have.Sym == missing.Sym {
why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+
"\t\thave %v%S\n\t\twant %v%S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
} else if ptr != 0 {
why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym)
} else if have != nil {
why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+
"\t\thave %v%S\n\t\twant %v%S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
} else {
why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym)
}
return ir.OXXX, why
}
if isptrto(dst, types.TINTER) {
why := fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst)
return ir.OXXX, why
}
if src.IsInterface() && dst.Kind() != types.TBLANK {
var missing, have *types.Field
var ptr int
var why string
if implements(dst, src, &missing, &have, &ptr) {
why = ": need type assertion"
}
return ir.OXXX, why
}
// 4. src is a bidirectional channel value, dst is a channel type,
// src and dst have identical element types, and
// either src or dst is not a named type.
if src.IsChan() && src.ChanDir() == types.Cboth && dst.IsChan() {
if types.Identical(src.Elem(), dst.Elem()) && (src.Sym() == nil || dst.Sym() == nil) {
return ir.OCONVNOP, ""
}
}
// 5. src is the predeclared identifier nil and dst is a nillable type.
if src.Kind() == types.TNIL {
switch dst.Kind() {
case types.TPTR,
types.TFUNC,
types.TMAP,
types.TCHAN,
types.TINTER,
types.TSLICE:
return ir.OCONVNOP, ""
}
}
// 6. rule about untyped constants - already converted by defaultlit.
// 7. Any typed value can be assigned to the blank identifier.
if dst.Kind() == types.TBLANK {
return ir.OCONVNOP, ""
}
return ir.OXXX, ""
}
// Can we convert a value of type src to a value of type dst?
// If so, return op code to use in conversion (maybe OCONVNOP).
// If not, return OXXX. In this case, the string return parameter may
// hold a reason why. In all other cases, it'll be the empty string.
// srcConstant indicates whether the value of type src is a constant.
func convertop(srcConstant bool, src, dst *types.Type) (ir.Op, string) {
if src == dst {
return ir.OCONVNOP, ""
}
if src == nil || dst == nil {
return ir.OXXX, ""
}
// Conversions from regular to go:notinheap are not allowed
// (unless it's unsafe.Pointer). These are runtime-specific
// rules.
// (a) Disallow (*T) to (*U) where T is go:notinheap but U isn't.
if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap() && !src.Elem().NotInHeap() {
why := fmt.Sprintf(":\n\t%v is incomplete (or unallocatable), but %v is not", dst.Elem(), src.Elem())
return ir.OXXX, why
}
// (b) Disallow string to []T where T is go:notinheap.
if src.IsString() && dst.IsSlice() && dst.Elem().NotInHeap() && (dst.Elem().Kind() == types.ByteType.Kind() || dst.Elem().Kind() == types.RuneType.Kind()) {
why := fmt.Sprintf(":\n\t%v is incomplete (or unallocatable)", dst.Elem())
return ir.OXXX, why
}
// 1. src can be assigned to dst.
op, why := assignop(src, dst)
if op != ir.OXXX {
return op, why
}
// The rules for interfaces are no different in conversions
// than assignments. If interfaces are involved, stop now
// with the good message from assignop.
// Otherwise clear the error.
if src.IsInterface() || dst.IsInterface() {
return ir.OXXX, why
}
// 2. Ignoring struct tags, src and dst have identical underlying types.
if types.IdenticalIgnoreTags(src.Underlying(), dst.Underlying()) {
return ir.OCONVNOP, ""
}
// 3. src and dst are unnamed pointer types and, ignoring struct tags,
// their base types have identical underlying types.
if src.IsPtr() && dst.IsPtr() && src.Sym() == nil && dst.Sym() == nil {
if types.IdenticalIgnoreTags(src.Elem().Underlying(), dst.Elem().Underlying()) {
return ir.OCONVNOP, ""
}
}
// 4. src and dst are both integer or floating point types.
if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) {
if simtype[src.Kind()] == simtype[dst.Kind()] {
return ir.OCONVNOP, ""
}
return ir.OCONV, ""
}
// 5. src and dst are both complex types.
if src.IsComplex() && dst.IsComplex() {
if simtype[src.Kind()] == simtype[dst.Kind()] {
return ir.OCONVNOP, ""
}
return ir.OCONV, ""
}
// Special case for constant conversions: any numeric
// conversion is potentially okay. We'll validate further
// within evconst. See #38117.
if srcConstant && (src.IsInteger() || src.IsFloat() || src.IsComplex()) && (dst.IsInteger() || dst.IsFloat() || dst.IsComplex()) {
return ir.OCONV, ""
}
// 6. src is an integer or has type []byte or []rune
// and dst is a string type.
if src.IsInteger() && dst.IsString() {
return ir.ORUNESTR, ""
}
if src.IsSlice() && dst.IsString() {
if src.Elem().Kind() == types.ByteType.Kind() {
return ir.OBYTES2STR, ""
}
if src.Elem().Kind() == types.RuneType.Kind() {
return ir.ORUNES2STR, ""
}
}
// 7. src is a string and dst is []byte or []rune.
// String to slice.
if src.IsString() && dst.IsSlice() {
if dst.Elem().Kind() == types.ByteType.Kind() {
return ir.OSTR2BYTES, ""
}
if dst.Elem().Kind() == types.RuneType.Kind() {
return ir.OSTR2RUNES, ""
}
}
// 8. src is a pointer or uintptr and dst is unsafe.Pointer.
if (src.IsPtr() || src.IsUintptr()) && dst.IsUnsafePtr() {
return ir.OCONVNOP, ""
}
// 9. src is unsafe.Pointer and dst is a pointer or uintptr.
if src.IsUnsafePtr() && (dst.IsPtr() || dst.IsUintptr()) {
return ir.OCONVNOP, ""
}
// src is map and dst is a pointer to corresponding hmap.
// This rule is needed for the implementation detail that
// go gc maps are implemented as a pointer to a hmap struct.
if src.Kind() == types.TMAP && dst.IsPtr() &&
src.MapType().Hmap == dst.Elem() {
return ir.OCONVNOP, ""
}
return ir.OXXX, ""
}
func assignconv(n ir.Node, t *types.Type, context string) ir.Node {
return assignconvfn(n, t, func() string { return context })
}
// Convert node n for assignment to type t.
func assignconvfn(n ir.Node, t *types.Type, context func() string) ir.Node {
if n == nil || n.Type() == nil || n.Type().Broke() {
return n
}
if t.Kind() == types.TBLANK && n.Type().Kind() == types.TNIL {
base.Errorf("use of untyped nil")
}
n = convlit1(n, t, false, context)
if n.Type() == nil {
return n
}
if t.Kind() == types.TBLANK {
return n
}
// Convert ideal bool from comparison to plain bool
// if the next step is non-bool (like interface{}).
if n.Type() == types.UntypedBool && !t.IsBoolean() {
if n.Op() == ir.ONAME || n.Op() == ir.OLITERAL {
r := ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, n)
r.SetType(types.Types[types.TBOOL])
r.SetTypecheck(1)
r.SetImplicit(true)
n = r
}
}
if types.Identical(n.Type(), t) {
return n
}
op, why := assignop(n.Type(), t)
if op == ir.OXXX {
base.Errorf("cannot use %L as type %v in %s%s", n, t, context(), why)
op = ir.OCONV
}
r := ir.NewConvExpr(base.Pos, op, t, n)
r.SetTypecheck(1)
r.SetImplicit(true)
return r
}
// backingArrayPtrLen extracts the pointer and length from a slice or string.
// This constructs two nodes referring to n, so n must be a cheapexpr.
func backingArrayPtrLen(n ir.Node) (ptr, length ir.Node) {
var init ir.Nodes
c := cheapexpr(n, &init)
if c != n || init.Len() != 0 {
base.Fatalf("backingArrayPtrLen not cheap: %v", n)
}
ptr = ir.NewUnaryExpr(base.Pos, ir.OSPTR, n)
if n.Type().IsString() {
ptr.SetType(types.Types[types.TUINT8].PtrTo())
} else {
ptr.SetType(n.Type().Elem().PtrTo())
}
length = ir.NewUnaryExpr(base.Pos, ir.OLEN, n)
length.SetType(types.Types[types.TINT])
return ptr, length
}
func syslook(name string) *ir.Name {
s := Runtimepkg.Lookup(name)
if s == nil || s.Def == nil {
base.Fatalf("syslook: can't find runtime.%s", name)
}
return ir.AsNode(s.Def).(*ir.Name)
}
// typehash computes a hash value for type t to use in type switch statements.
func typehash(t *types.Type) uint32 {
p := t.LongString()
// Using MD5 is overkill, but reduces accidental collisions.
h := md5.Sum([]byte(p))
return binary.LittleEndian.Uint32(h[:4])
}
// updateHasCall checks whether expression n contains any function
// calls and sets the n.HasCall flag if so.
func updateHasCall(n ir.Node) {
if n == nil {
return
}
n.SetHasCall(calcHasCall(n))
}
func calcHasCall(n ir.Node) bool {
if n.Init().Len() != 0 {
// TODO(mdempsky): This seems overly conservative.
return true
}
switch n.Op() {
default:
base.Fatalf("calcHasCall %+v", n)
panic("unreachable")
case ir.OLITERAL, ir.ONIL, ir.ONAME, ir.OTYPE, ir.ONAMEOFFSET:
if n.HasCall() {
base.Fatalf("OLITERAL/ONAME/OTYPE should never have calls: %+v", n)
}
return false
case ir.OCALL, ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER:
return true
case ir.OANDAND, ir.OOROR:
// hard with instrumented code
if instrumenting {
return true
}
return n.Left().HasCall() || n.Right().HasCall()
case ir.OINDEX, ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR, ir.OSLICESTR,
ir.ODEREF, ir.ODOTPTR, ir.ODOTTYPE, ir.ODIV, ir.OMOD:
// These ops might panic, make sure they are done
// before we start marshaling args for a call. See issue 16760.
return true
// When using soft-float, these ops might be rewritten to function calls
// so we ensure they are evaluated first.
case ir.OADD, ir.OSUB, ir.OMUL:
if thearch.SoftFloat && (isFloat[n.Type().Kind()] || isComplex[n.Type().Kind()]) {
return true
}
return n.Left().HasCall() || n.Right().HasCall()
case ir.ONEG:
if thearch.SoftFloat && (isFloat[n.Type().Kind()] || isComplex[n.Type().Kind()]) {
return true
}
return n.Left().HasCall()
case ir.OLT, ir.OEQ, ir.ONE, ir.OLE, ir.OGE, ir.OGT:
if thearch.SoftFloat && (isFloat[n.Left().Type().Kind()] || isComplex[n.Left().Type().Kind()]) {
return true
}
return n.Left().HasCall() || n.Right().HasCall()
case ir.OCONV:
if thearch.SoftFloat && ((isFloat[n.Type().Kind()] || isComplex[n.Type().Kind()]) || (isFloat[n.Left().Type().Kind()] || isComplex[n.Left().Type().Kind()])) {
return true
}
return n.Left().HasCall()
case ir.OAND, ir.OANDNOT, ir.OLSH, ir.OOR, ir.ORSH, ir.OXOR, ir.OCOPY, ir.OCOMPLEX, ir.OEFACE:
return n.Left().HasCall() || n.Right().HasCall()
case ir.OAS:
return n.Left().HasCall() || n.Right() != nil && n.Right().HasCall()
case ir.OADDR:
return n.Left().HasCall()
case ir.OPAREN:
return n.Left().HasCall()
case ir.OBITNOT, ir.ONOT, ir.OPLUS, ir.ORECV,
ir.OALIGNOF, ir.OCAP, ir.OCLOSE, ir.OIMAG, ir.OLEN, ir.ONEW,
ir.OOFFSETOF, ir.OPANIC, ir.OREAL, ir.OSIZEOF,
ir.OCHECKNIL, ir.OCFUNC, ir.OIDATA, ir.OITAB, ir.ONEWOBJ, ir.OSPTR, ir.OVARDEF, ir.OVARKILL, ir.OVARLIVE:
return n.Left().HasCall()
case ir.ODOT, ir.ODOTMETH, ir.ODOTINTER:
return n.Left().HasCall()
case ir.OGETG, ir.OCLOSUREREAD, ir.OMETHEXPR:
return false
// TODO(rsc): These look wrong in various ways but are what calcHasCall has always done.
case ir.OADDSTR:
// TODO(rsc): This used to check left and right, which are not part of OADDSTR.
return false
case ir.OBLOCK:
// TODO(rsc): Surely the block's statements matter.
return false
case ir.OCONVIFACE, ir.OCONVNOP, ir.OBYTES2STR, ir.OBYTES2STRTMP, ir.ORUNES2STR, ir.OSTR2BYTES, ir.OSTR2BYTESTMP, ir.OSTR2RUNES, ir.ORUNESTR:
// TODO(rsc): Some conversions are themselves calls, no?
return n.Left().HasCall()
case ir.ODOTTYPE2:
// TODO(rsc): Shouldn't this be up with ODOTTYPE above?
return n.Left().HasCall()
case ir.OSLICEHEADER:
// TODO(rsc): What about len and cap?
return n.Left().HasCall()
case ir.OAS2DOTTYPE, ir.OAS2FUNC:
// TODO(rsc): Surely we need to check List and Rlist.
return false
}
}
func badtype(op ir.Op, tl, tr *types.Type) {
var s string
if tl != nil {
s += fmt.Sprintf("\n\t%v", tl)
}
if tr != nil {
s += fmt.Sprintf("\n\t%v", tr)
}
// common mistake: *struct and *interface.
if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
s += "\n\t(*struct vs *interface)"
} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
s += "\n\t(*interface vs *struct)"
}
}
base.Errorf("illegal types for operand: %v%s", op, s)
}
// brcom returns !(op).
// For example, brcom(==) is !=.
func brcom(op ir.Op) ir.Op {
switch op {
case ir.OEQ:
return ir.ONE
case ir.ONE:
return ir.OEQ
case ir.OLT:
return ir.OGE
case ir.OGT:
return ir.OLE
case ir.OLE:
return ir.OGT
case ir.OGE:
return ir.OLT
}
base.Fatalf("brcom: no com for %v\n", op)
return op
}
// brrev returns reverse(op).
// For example, Brrev(<) is >.
func brrev(op ir.Op) ir.Op {
switch op {
case ir.OEQ:
return ir.OEQ
case ir.ONE:
return ir.ONE
case ir.OLT:
return ir.OGT
case ir.OGT:
return ir.OLT
case ir.OLE:
return ir.OGE
case ir.OGE:
return ir.OLE
}
base.Fatalf("brrev: no rev for %v\n", op)
return op
}
// return side effect-free n, appending side effects to init.
// result is assignable if n is.
func safeexpr(n ir.Node, init *ir.Nodes) ir.Node {
if n == nil {
return nil
}
if n.Init().Len() != 0 {
walkstmtlist(n.Init().Slice())
init.AppendNodes(n.PtrInit())
}
switch n.Op() {
case ir.ONAME, ir.OLITERAL, ir.ONIL, ir.ONAMEOFFSET:
return n
case ir.OLEN, ir.OCAP:
l := safeexpr(n.Left(), init)
if l == n.Left() {
return n
}
a := ir.Copy(n).(*ir.UnaryExpr)
a.SetLeft(l)
return walkexpr(typecheck(a, ctxExpr), init)
case ir.ODOT, ir.ODOTPTR:
l := safeexpr(n.Left(), init)
if l == n.Left() {
return n
}
a := ir.Copy(n).(*ir.SelectorExpr)
a.SetLeft(l)
return walkexpr(typecheck(a, ctxExpr), init)
case ir.ODEREF:
l := safeexpr(n.Left(), init)
if l == n.Left() {
return n
}
a := ir.Copy(n).(*ir.StarExpr)
a.SetLeft(l)
return walkexpr(typecheck(a, ctxExpr), init)
case ir.OINDEX, ir.OINDEXMAP:
l := safeexpr(n.Left(), init)
r := safeexpr(n.Right(), init)
if l == n.Left() && r == n.Right() {
return n
}
a := ir.Copy(n).(*ir.IndexExpr)
a.SetLeft(l)
a.SetRight(r)
return walkexpr(typecheck(a, ctxExpr), init)
case ir.OSTRUCTLIT, ir.OARRAYLIT, ir.OSLICELIT:
if isStaticCompositeLiteral(n) {
return n
}
}
// make a copy; must not be used as an lvalue
if islvalue(n) {
base.Fatalf("missing lvalue case in safeexpr: %v", n)
}
return cheapexpr(n, init)
}
func copyexpr(n ir.Node, t *types.Type, init *ir.Nodes) ir.Node {
l := temp(t)
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, l, n))
return l
}
// return side-effect free and cheap n, appending side effects to init.
// result may not be assignable.
func cheapexpr(n ir.Node, init *ir.Nodes) ir.Node {
switch n.Op() {
case ir.ONAME, ir.OLITERAL, ir.ONIL:
return n
}
return copyexpr(n, n.Type(), init)
}
// Code to resolve elided DOTs in embedded types.
// A Dlist stores a pointer to a TFIELD Type embedded within
// a TSTRUCT or TINTER Type.
type Dlist struct {
field *types.Field
}
// dotlist is used by adddot1 to record the path of embedded fields
// used to access a target field or method.
// Must be non-nil so that dotpath returns a non-nil slice even if d is zero.
var dotlist = make([]Dlist, 10)
// lookdot0 returns the number of fields or methods named s associated
// with Type t. If exactly one exists, it will be returned in *save
// (if save is not nil).
func lookdot0(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) int {
u := t
if u.IsPtr() {
u = u.Elem()
}
c := 0
if u.IsStruct() || u.IsInterface() {
for _, f := range u.Fields().Slice() {
if f.Sym == s || (ignorecase && f.IsMethod() && strings.EqualFold(f.Sym.Name, s.Name)) {
if save != nil {
*save = f
}
c++
}
}
}
u = t
if t.Sym() != nil && t.IsPtr() && !t.Elem().IsPtr() {
// If t is a defined pointer type, then x.m is shorthand for (*x).m.
u = t.Elem()
}
u = methtype(u)
if u != nil {
for _, f := range u.Methods().Slice() {
if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) {
if save != nil {
*save = f
}
c++
}
}
}
return c
}
// adddot1 returns the number of fields or methods named s at depth d in Type t.
// If exactly one exists, it will be returned in *save (if save is not nil),
// and dotlist will contain the path of embedded fields traversed to find it,
// in reverse order. If none exist, more will indicate whether t contains any
// embedded fields at depth d, so callers can decide whether to retry at
// a greater depth.
func adddot1(s *types.Sym, t *types.Type, d int, save **types.Field, ignorecase bool) (c int, more bool) {
if t.Recur() {
return
}
t.SetRecur(true)
defer t.SetRecur(false)
var u *types.Type
d--
if d < 0 {
// We've reached our target depth. If t has any fields/methods
// named s, then we're done. Otherwise, we still need to check
// below for embedded fields.
c = lookdot0(s, t, save, ignorecase)
if c != 0 {
return c, false
}
}
u = t
if u.IsPtr() {
u = u.Elem()
}
if !u.IsStruct() && !u.IsInterface() {
return c, false
}
for _, f := range u.Fields().Slice() {
if f.Embedded == 0 || f.Sym == nil {
continue
}
if d < 0 {
// Found an embedded field at target depth.
return c, true
}
a, more1 := adddot1(s, f.Type, d, save, ignorecase)
if a != 0 && c == 0 {
dotlist[d].field = f
}
c += a
if more1 {
more = true
}
}
return c, more
}
// dotpath computes the unique shortest explicit selector path to fully qualify
// a selection expression x.f, where x is of type t and f is the symbol s.
// If no such path exists, dotpath returns nil.
// If there are multiple shortest paths to the same depth, ambig is true.
func dotpath(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) (path []Dlist, ambig bool) {
// The embedding of types within structs imposes a tree structure onto
// types: structs parent the types they embed, and types parent their
// fields or methods. Our goal here is to find the shortest path to
// a field or method named s in the subtree rooted at t. To accomplish
// that, we iteratively perform depth-first searches of increasing depth
// until we either find the named field/method or exhaust the tree.
for d := 0; ; d++ {
if d > len(dotlist) {
dotlist = append(dotlist, Dlist{})
}
if c, more := adddot1(s, t, d, save, ignorecase); c == 1 {
return dotlist[:d], false
} else if c > 1 {
return nil, true
} else if !more {
return nil, false
}
}
}
// in T.field
// find missing fields that
// will give shortest unique addressing.
// modify the tree with missing type names.
func adddot(n *ir.SelectorExpr) *ir.SelectorExpr {
n.SetLeft(typecheck(n.Left(), ctxType|ctxExpr))
if n.Left().Diag() {
n.SetDiag(true)
}
t := n.Left().Type()
if t == nil {
return n
}
if n.Left().Op() == ir.OTYPE {
return n
}
s := n.Sym()
if s == nil {
return n
}
switch path, ambig := dotpath(s, t, nil, false); {
case path != nil:
// rebuild elided dots
for c := len(path) - 1; c >= 0; c-- {
dot := ir.NewSelectorExpr(base.Pos, ir.ODOT, n.Left(), path[c].field.Sym)
dot.SetImplicit(true)
dot.SetType(path[c].field.Type)
n.SetLeft(dot)
}
case ambig:
base.Errorf("ambiguous selector %v", n)
n.SetLeft(nil)
}
return n
}
// Code to help generate trampoline functions for methods on embedded
// types. These are approx the same as the corresponding adddot
// routines except that they expect to be called with unique tasks and
// they return the actual methods.
type Symlink struct {
field *types.Field
}
var slist []Symlink
func expand0(t *types.Type) {
u := t
if u.IsPtr() {
u = u.Elem()
}
if u.IsInterface() {
for _, f := range u.Fields().Slice() {
if f.Sym.Uniq() {
continue
}
f.Sym.SetUniq(true)
slist = append(slist, Symlink{field: f})
}
return
}
u = methtype(t)
if u != nil {
for _, f := range u.Methods().Slice() {
if f.Sym.Uniq() {
continue
}
f.Sym.SetUniq(true)
slist = append(slist, Symlink{field: f})
}
}
}
func expand1(t *types.Type, top bool) {
if t.Recur() {
return
}
t.SetRecur(true)
if !top {
expand0(t)
}
u := t
if u.IsPtr() {
u = u.Elem()
}
if u.IsStruct() || u.IsInterface() {
for _, f := range u.Fields().Slice() {
if f.Embedded == 0 {
continue
}
if f.Sym == nil {
continue
}
expand1(f.Type, false)
}
}
t.SetRecur(false)
}
func expandmeth(t *types.Type) {
if t == nil || t.AllMethods().Len() != 0 {
return
}
// mark top-level method symbols
// so that expand1 doesn't consider them.
for _, f := range t.Methods().Slice() {
f.Sym.SetUniq(true)
}
// generate all reachable methods
slist = slist[:0]
expand1(t, true)
// check each method to be uniquely reachable
var ms []*types.Field
for i, sl := range slist {
slist[i].field = nil
sl.field.Sym.SetUniq(false)
var f *types.Field
path, _ := dotpath(sl.field.Sym, t, &f, false)
if path == nil {
continue
}
// dotpath may have dug out arbitrary fields, we only want methods.
if !f.IsMethod() {
continue
}
// add it to the base type method list
f = f.Copy()
f.Embedded = 1 // needs a trampoline
for _, d := range path {
if d.field.Type.IsPtr() {
f.Embedded = 2
break
}
}
ms = append(ms, f)
}
for _, f := range t.Methods().Slice() {
f.Sym.SetUniq(false)
}
ms = append(ms, t.Methods().Slice()...)
sort.Sort(methcmp(ms))
t.AllMethods().Set(ms)
}
// Given funarg struct list, return list of fn args.
func structargs(tl *types.Type, mustname bool) []*ir.Field {
var args []*ir.Field
gen := 0
for _, t := range tl.Fields().Slice() {
s := t.Sym
if mustname && (s == nil || s.Name == "_") {
// invent a name so that we can refer to it in the trampoline
s = lookupN(".anon", gen)
gen++
}
a := symfield(s, t.Type)
a.Pos = t.Pos
a.IsDDD = t.IsDDD()
args = append(args, a)
}
return args
}
// Generate a wrapper function to convert from
// a receiver of type T to a receiver of type U.
// That is,
//
// func (t T) M() {
// ...
// }
//
// already exists; this function generates
//
// func (u U) M() {
// u.M()
// }
//
// where the types T and U are such that u.M() is valid
// and calls the T.M method.
// The resulting function is for use in method tables.
//
// rcvr - U
// method - M func (t T)(), a TFIELD type struct
// newnam - the eventual mangled name of this function
func genwrapper(rcvr *types.Type, method *types.Field, newnam *types.Sym) {
if false && base.Flag.LowerR != 0 {
fmt.Printf("genwrapper rcvrtype=%v method=%v newnam=%v\n", rcvr, method, newnam)
}
// Only generate (*T).M wrappers for T.M in T's own package.
if rcvr.IsPtr() && rcvr.Elem() == method.Type.Recv().Type &&
rcvr.Elem().Sym() != nil && rcvr.Elem().Sym().Pkg != types.LocalPkg {
return
}
// Only generate I.M wrappers for I in I's own package
// but keep doing it for error.Error (was issue #29304).
if rcvr.IsInterface() && rcvr.Sym() != nil && rcvr.Sym().Pkg != types.LocalPkg && rcvr != types.ErrorType {
return
}
base.Pos = autogeneratedPos
dclcontext = ir.PEXTERN
tfn := ir.NewFuncType(base.Pos,
namedfield(".this", rcvr),
structargs(method.Type.Params(), true),
structargs(method.Type.Results(), false))
fn := dclfunc(newnam, tfn)
fn.SetDupok(true)
nthis := ir.AsNode(tfn.Type().Recv().Nname)
methodrcvr := method.Type.Recv().Type
// generate nil pointer check for better error
if rcvr.IsPtr() && rcvr.Elem() == methodrcvr {
// generating wrapper from *T to T.
n := ir.NewIfStmt(base.Pos, nil, nil, nil)
n.SetLeft(ir.NewBinaryExpr(base.Pos, ir.OEQ, nthis, nodnil()))
call := ir.NewCallExpr(base.Pos, ir.OCALL, syslook("panicwrap"), nil)
n.PtrBody().Set1(call)
fn.PtrBody().Append(n)
}
dot := adddot(ir.NewSelectorExpr(base.Pos, ir.OXDOT, nthis, method.Sym))
// generate call
// It's not possible to use a tail call when dynamic linking on ppc64le. The
// bad scenario is when a local call is made to the wrapper: the wrapper will
// call the implementation, which might be in a different module and so set
// the TOC to the appropriate value for that module. But if it returns
// directly to the wrapper's caller, nothing will reset it to the correct
// value for that function.
if !instrumenting && rcvr.IsPtr() && methodrcvr.IsPtr() && method.Embedded != 0 && !isifacemethod(method.Type) && !(thearch.LinkArch.Name == "ppc64le" && base.Ctxt.Flag_dynlink) {
// generate tail call: adjust pointer receiver and jump to embedded method.
left := dot.Left() // skip final .M
if !left.Type().IsPtr() {
left = nodAddr(left)
}
as := ir.NewAssignStmt(base.Pos, nthis, convnop(left, rcvr))
fn.PtrBody().Append(as)
fn.PtrBody().Append(ir.NewBranchStmt(base.Pos, ir.ORETJMP, methodSym(methodrcvr, method.Sym)))
} else {
fn.SetWrapper(true) // ignore frame for panic+recover matching
call := ir.NewCallExpr(base.Pos, ir.OCALL, dot, nil)
call.PtrList().Set(paramNnames(tfn.Type()))
call.SetIsDDD(tfn.Type().IsVariadic())
if method.Type.NumResults() > 0 {
ret := ir.NewReturnStmt(base.Pos, nil)
ret.PtrList().Set1(call)
fn.PtrBody().Append(ret)
} else {
fn.PtrBody().Append(call)
}
}
if false && base.Flag.LowerR != 0 {
ir.DumpList("genwrapper body", fn.Body())
}
funcbody()
if base.Debug.DclStack != 0 {
testdclstack()
}
typecheckFunc(fn)
Curfn = fn
typecheckslice(fn.Body().Slice(), ctxStmt)
// Inline calls within (*T).M wrappers. This is safe because we only
// generate those wrappers within the same compilation unit as (T).M.
// TODO(mdempsky): Investigate why we can't enable this more generally.
if rcvr.IsPtr() && rcvr.Elem() == method.Type.Recv().Type && rcvr.Elem().Sym() != nil {
inlcalls(fn)
}
escapeFuncs([]*ir.Func{fn}, false)
Curfn = nil
Target.Decls = append(Target.Decls, fn)
}
func paramNnames(ft *types.Type) []ir.Node {
args := make([]ir.Node, ft.NumParams())
for i, f := range ft.Params().FieldSlice() {
args[i] = ir.AsNode(f.Nname)
}
return args
}
func hashmem(t *types.Type) ir.Node {
sym := Runtimepkg.Lookup("memhash")
n := NewName(sym)
setNodeNameFunc(n)
n.SetType(functype(nil, []*ir.Field{
anonfield(types.NewPtr(t)),
anonfield(types.Types[types.TUINTPTR]),
anonfield(types.Types[types.TUINTPTR]),
}, []*ir.Field{
anonfield(types.Types[types.TUINTPTR]),
}))
return n
}
func ifacelookdot(s *types.Sym, t *types.Type, ignorecase bool) (m *types.Field, followptr bool) {
if t == nil {
return nil, false
}
path, ambig := dotpath(s, t, &m, ignorecase)
if path == nil {
if ambig {
base.Errorf("%v.%v is ambiguous", t, s)
}
return nil, false
}
for _, d := range path {
if d.field.Type.IsPtr() {
followptr = true
break
}
}
if !m.IsMethod() {
base.Errorf("%v.%v is a field, not a method", t, s)
return nil, followptr
}
return m, followptr
}
func implements(t, iface *types.Type, m, samename **types.Field, ptr *int) bool {
t0 := t
if t == nil {
return false
}
if t.IsInterface() {
i := 0
tms := t.Fields().Slice()
for _, im := range iface.Fields().Slice() {
for i < len(tms) && tms[i].Sym != im.Sym {
i++
}
if i == len(tms) {
*m = im
*samename = nil
*ptr = 0
return false
}
tm := tms[i]
if !types.Identical(tm.Type, im.Type) {
*m = im
*samename = tm
*ptr = 0
return false
}
}
return true
}
t = methtype(t)
var tms []*types.Field
if t != nil {
expandmeth(t)
tms = t.AllMethods().Slice()
}
i := 0
for _, im := range iface.Fields().Slice() {
if im.Broke() {
continue
}
for i < len(tms) && tms[i].Sym != im.Sym {
i++
}
if i == len(tms) {
*m = im
*samename, _ = ifacelookdot(im.Sym, t, true)
*ptr = 0
return false
}
tm := tms[i]
if tm.Nointerface() || !types.Identical(tm.Type, im.Type) {
*m = im
*samename = tm
*ptr = 0
return false
}
followptr := tm.Embedded == 2
// if pointer receiver in method,
// the method does not exist for value types.
rcvr := tm.Type.Recv().Type
if rcvr.IsPtr() && !t0.IsPtr() && !followptr && !isifacemethod(tm.Type) {
if false && base.Flag.LowerR != 0 {
base.Errorf("interface pointer mismatch")
}
*m = im
*samename = nil
*ptr = 1
return false
}
}
return true
}
func liststmt(l []ir.Node) ir.Node {
n := ir.NewBlockStmt(base.Pos, nil)
n.PtrList().Set(l)
if len(l) != 0 {
n.SetPos(l[0].Pos())
}
return n
}
func ngotype(n ir.Node) *types.Sym {
if n.Type() != nil {
return typenamesym(n.Type())
}
return nil
}
// The result of initExpr MUST be assigned back to n, e.g.
// n.Left = initExpr(init, n.Left)
func initExpr(init []ir.Node, n ir.Node) ir.Node {
if len(init) == 0 {
return n
}
if ir.MayBeShared(n) {
// Introduce OCONVNOP to hold init list.
old := n
n = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, old)
n.SetType(old.Type())
n.SetTypecheck(1)
}
n.PtrInit().Prepend(init...)
n.SetHasCall(true)
return n
}
// The linker uses the magic symbol prefixes "go." and "type."
// Avoid potential confusion between import paths and symbols
// by rejecting these reserved imports for now. Also, people
// "can do weird things in GOPATH and we'd prefer they didn't
// do _that_ weird thing" (per rsc). See also #4257.
var reservedimports = []string{
"go",
"type",
}
func isbadimport(path string, allowSpace bool) bool {
if strings.Contains(path, "\x00") {
base.Errorf("import path contains NUL")
return true
}
for _, ri := range reservedimports {
if path == ri {
base.Errorf("import path %q is reserved and cannot be used", path)
return true
}
}
for _, r := range path {
if r == utf8.RuneError {
base.Errorf("import path contains invalid UTF-8 sequence: %q", path)
return true
}
if r < 0x20 || r == 0x7f {
base.Errorf("import path contains control character: %q", path)
return true
}
if r == '\\' {
base.Errorf("import path contains backslash; use slash: %q", path)
return true
}
if !allowSpace && unicode.IsSpace(r) {
base.Errorf("import path contains space character: %q", path)
return true
}
if strings.ContainsRune("!\"#$%&'()*,:;<=>?[]^`{|}", r) {
base.Errorf("import path contains invalid character '%c': %q", r, path)
return true
}
}
return false
}
// Can this type be stored directly in an interface word?
// Yes, if the representation is a single pointer.
func isdirectiface(t *types.Type) bool {
if t.Broke() {
return false
}
switch t.Kind() {
case types.TPTR:
// Pointers to notinheap types must be stored indirectly. See issue 42076.
return !t.Elem().NotInHeap()
case types.TCHAN,
types.TMAP,
types.TFUNC,
types.TUNSAFEPTR:
return true
case types.TARRAY:
// Array of 1 direct iface type can be direct.
return t.NumElem() == 1 && isdirectiface(t.Elem())
case types.TSTRUCT:
// Struct with 1 field of direct iface type can be direct.
return t.NumFields() == 1 && isdirectiface(t.Field(0).Type)
}
return false
}
// itabType loads the _type field from a runtime.itab struct.
func itabType(itab ir.Node) ir.Node {
typ := ir.NewSelectorExpr(base.Pos, ir.ODOTPTR, itab, nil)
typ.SetType(types.NewPtr(types.Types[types.TUINT8]))
typ.SetTypecheck(1)
typ.SetOffset(int64(Widthptr)) // offset of _type in runtime.itab
typ.SetBounded(true) // guaranteed not to fault
return typ
}
// ifaceData loads the data field from an interface.
// The concrete type must be known to have type t.
// It follows the pointer if !isdirectiface(t).
func ifaceData(pos src.XPos, n ir.Node, t *types.Type) ir.Node {
if t.IsInterface() {
base.Fatalf("ifaceData interface: %v", t)
}
ptr := ir.NewUnaryExpr(pos, ir.OIDATA, n)
if isdirectiface(t) {
ptr.SetType(t)
ptr.SetTypecheck(1)
return ptr
}
ptr.SetType(types.NewPtr(t))
ptr.SetTypecheck(1)
ind := ir.NewStarExpr(pos, ptr)
ind.SetType(t)
ind.SetTypecheck(1)
ind.SetBounded(true)
return ind
}
// typePos returns the position associated with t.
// This is where t was declared or where it appeared as a type expression.
func typePos(t *types.Type) src.XPos {
if pos := t.Pos(); pos.IsKnown() {
return pos
}
base.Fatalf("bad type: %v", t)
panic("unreachable")
}