mirror of https://github.com/golang/go.git
571 lines
16 KiB
Go
571 lines
16 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/syntax"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/src"
|
|
"fmt"
|
|
)
|
|
|
|
func (p *noder) funcLit(expr *syntax.FuncLit) ir.Node {
|
|
xtype := p.typeExpr(expr.Type)
|
|
ntype := p.typeExpr(expr.Type)
|
|
|
|
fn := ir.NewFunc(p.pos(expr))
|
|
fn.SetIsHiddenClosure(Curfn != nil)
|
|
fn.Nname = newFuncNameAt(p.pos(expr), ir.BlankNode.Sym(), fn) // filled in by typecheckclosure
|
|
fn.Nname.Ntype = xtype
|
|
fn.Nname.Defn = fn
|
|
|
|
clo := ir.NewClosureExpr(p.pos(expr), fn)
|
|
fn.ClosureType = ntype
|
|
fn.OClosure = clo
|
|
|
|
p.funcBody(fn, expr.Body)
|
|
|
|
// closure-specific variables are hanging off the
|
|
// ordinary ones in the symbol table; see oldname.
|
|
// unhook them.
|
|
// make the list of pointers for the closure call.
|
|
for _, v := range fn.ClosureVars {
|
|
// Unlink from v1; see comment in syntax.go type Param for these fields.
|
|
v1 := v.Defn
|
|
v1.Name().Innermost = v.Outer
|
|
|
|
// If the closure usage of v is not dense,
|
|
// we need to make it dense; now that we're out
|
|
// of the function in which v appeared,
|
|
// look up v.Sym in the enclosing function
|
|
// and keep it around for use in the compiled code.
|
|
//
|
|
// That is, suppose we just finished parsing the innermost
|
|
// closure f4 in this code:
|
|
//
|
|
// func f() {
|
|
// v := 1
|
|
// func() { // f2
|
|
// use(v)
|
|
// func() { // f3
|
|
// func() { // f4
|
|
// use(v)
|
|
// }()
|
|
// }()
|
|
// }()
|
|
// }
|
|
//
|
|
// At this point v.Outer is f2's v; there is no f3's v.
|
|
// To construct the closure f4 from within f3,
|
|
// we need to use f3's v and in this case we need to create f3's v.
|
|
// We are now in the context of f3, so calling oldname(v.Sym)
|
|
// obtains f3's v, creating it if necessary (as it is in the example).
|
|
//
|
|
// capturevars will decide whether to use v directly or &v.
|
|
v.Outer = oldname(v.Sym()).(*ir.Name)
|
|
}
|
|
|
|
return clo
|
|
}
|
|
|
|
// typecheckclosure typechecks an OCLOSURE node. It also creates the named
|
|
// function associated with the closure.
|
|
// TODO: This creation of the named function should probably really be done in a
|
|
// separate pass from type-checking.
|
|
func typecheckclosure(clo *ir.ClosureExpr, top int) {
|
|
fn := clo.Func()
|
|
// Set current associated iota value, so iota can be used inside
|
|
// function in ConstSpec, see issue #22344
|
|
if x := getIotaValue(); x >= 0 {
|
|
fn.SetIota(x)
|
|
}
|
|
|
|
fn.ClosureType = typecheck(fn.ClosureType, ctxType)
|
|
clo.SetType(fn.ClosureType.Type())
|
|
fn.SetClosureCalled(top&ctxCallee != 0)
|
|
|
|
// Do not typecheck fn twice, otherwise, we will end up pushing
|
|
// fn to Target.Decls multiple times, causing initLSym called twice.
|
|
// See #30709
|
|
if fn.Typecheck() == 1 {
|
|
return
|
|
}
|
|
|
|
for _, ln := range fn.ClosureVars {
|
|
n := ln.Defn
|
|
if !n.Name().Captured() {
|
|
n.Name().SetCaptured(true)
|
|
if n.Name().Decldepth == 0 {
|
|
base.Fatalf("typecheckclosure: var %v does not have decldepth assigned", n)
|
|
}
|
|
|
|
// Ignore assignments to the variable in straightline code
|
|
// preceding the first capturing by a closure.
|
|
if n.Name().Decldepth == decldepth {
|
|
n.Name().SetAssigned(false)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn.Nname.SetSym(closurename(Curfn))
|
|
setNodeNameFunc(fn.Nname)
|
|
typecheckFunc(fn)
|
|
|
|
// Type check the body now, but only if we're inside a function.
|
|
// At top level (in a variable initialization: curfn==nil) we're not
|
|
// ready to type check code yet; we'll check it later, because the
|
|
// underlying closure function we create is added to Target.Decls.
|
|
if Curfn != nil && clo.Type() != nil {
|
|
oldfn := Curfn
|
|
Curfn = fn
|
|
olddd := decldepth
|
|
decldepth = 1
|
|
typecheckslice(fn.Body().Slice(), ctxStmt)
|
|
decldepth = olddd
|
|
Curfn = oldfn
|
|
}
|
|
|
|
Target.Decls = append(Target.Decls, fn)
|
|
}
|
|
|
|
// globClosgen is like Func.Closgen, but for the global scope.
|
|
var globClosgen int32
|
|
|
|
// closurename generates a new unique name for a closure within
|
|
// outerfunc.
|
|
func closurename(outerfunc *ir.Func) *types.Sym {
|
|
outer := "glob."
|
|
prefix := "func"
|
|
gen := &globClosgen
|
|
|
|
if outerfunc != nil {
|
|
if outerfunc.OClosure != nil {
|
|
prefix = ""
|
|
}
|
|
|
|
outer = ir.FuncName(outerfunc)
|
|
|
|
// There may be multiple functions named "_". In those
|
|
// cases, we can't use their individual Closgens as it
|
|
// would lead to name clashes.
|
|
if !ir.IsBlank(outerfunc.Nname) {
|
|
gen = &outerfunc.Closgen
|
|
}
|
|
}
|
|
|
|
*gen++
|
|
return lookup(fmt.Sprintf("%s.%s%d", outer, prefix, *gen))
|
|
}
|
|
|
|
// capturevarscomplete is set to true when the capturevars phase is done.
|
|
var capturevarscomplete bool
|
|
|
|
// capturevars is called in a separate phase after all typechecking is done.
|
|
// It decides whether each variable captured by a closure should be captured
|
|
// by value or by reference.
|
|
// We use value capturing for values <= 128 bytes that are never reassigned
|
|
// after capturing (effectively constant).
|
|
func capturevars(fn *ir.Func) {
|
|
lno := base.Pos
|
|
base.Pos = fn.Pos()
|
|
cvars := fn.ClosureVars
|
|
out := cvars[:0]
|
|
for _, v := range cvars {
|
|
if v.Type() == nil {
|
|
// If v.Type is nil, it means v looked like it
|
|
// was going to be used in the closure, but
|
|
// isn't. This happens in struct literals like
|
|
// s{f: x} where we can't distinguish whether
|
|
// f is a field identifier or expression until
|
|
// resolving s.
|
|
continue
|
|
}
|
|
out = append(out, v)
|
|
|
|
// type check the & of closed variables outside the closure,
|
|
// so that the outer frame also grabs them and knows they escape.
|
|
dowidth(v.Type())
|
|
|
|
var outer ir.Node
|
|
outer = v.Outer
|
|
outermost := v.Defn.(*ir.Name)
|
|
|
|
// out parameters will be assigned to implicitly upon return.
|
|
if outermost.Class() != ir.PPARAMOUT && !outermost.Name().Addrtaken() && !outermost.Name().Assigned() && v.Type().Width <= 128 {
|
|
v.SetByval(true)
|
|
} else {
|
|
outermost.Name().SetAddrtaken(true)
|
|
outer = nodAddr(outer)
|
|
}
|
|
|
|
if base.Flag.LowerM > 1 {
|
|
var name *types.Sym
|
|
if v.Curfn != nil && v.Curfn.Nname != nil {
|
|
name = v.Curfn.Sym()
|
|
}
|
|
how := "ref"
|
|
if v.Byval() {
|
|
how = "value"
|
|
}
|
|
base.WarnfAt(v.Pos(), "%v capturing by %s: %v (addr=%v assign=%v width=%d)", name, how, v.Sym(), outermost.Name().Addrtaken(), outermost.Name().Assigned(), int32(v.Type().Width))
|
|
}
|
|
|
|
outer = typecheck(outer, ctxExpr)
|
|
fn.ClosureEnter.Append(outer)
|
|
}
|
|
|
|
fn.ClosureVars = out
|
|
base.Pos = lno
|
|
}
|
|
|
|
// transformclosure is called in a separate phase after escape analysis.
|
|
// It transform closure bodies to properly reference captured variables.
|
|
func transformclosure(fn *ir.Func) {
|
|
lno := base.Pos
|
|
base.Pos = fn.Pos()
|
|
|
|
if fn.ClosureCalled() {
|
|
// If the closure is directly called, we transform it to a plain function call
|
|
// with variables passed as args. This avoids allocation of a closure object.
|
|
// Here we do only a part of the transformation. Walk of OCALLFUNC(OCLOSURE)
|
|
// will complete the transformation later.
|
|
// For illustration, the following closure:
|
|
// func(a int) {
|
|
// println(byval)
|
|
// byref++
|
|
// }(42)
|
|
// becomes:
|
|
// func(byval int, &byref *int, a int) {
|
|
// println(byval)
|
|
// (*&byref)++
|
|
// }(byval, &byref, 42)
|
|
|
|
// f is ONAME of the actual function.
|
|
f := fn.Nname
|
|
|
|
// We are going to insert captured variables before input args.
|
|
var params []*types.Field
|
|
var decls []*ir.Name
|
|
for _, v := range fn.ClosureVars {
|
|
if !v.Byval() {
|
|
// If v of type T is captured by reference,
|
|
// we introduce function param &v *T
|
|
// and v remains PAUTOHEAP with &v heapaddr
|
|
// (accesses will implicitly deref &v).
|
|
addr := NewName(lookup("&" + v.Sym().Name))
|
|
addr.SetType(types.NewPtr(v.Type()))
|
|
v.Heapaddr = addr
|
|
v = addr
|
|
}
|
|
|
|
v.SetClass(ir.PPARAM)
|
|
decls = append(decls, v)
|
|
|
|
fld := types.NewField(src.NoXPos, v.Sym(), v.Type())
|
|
fld.Nname = v
|
|
params = append(params, fld)
|
|
}
|
|
|
|
if len(params) > 0 {
|
|
// Prepend params and decls.
|
|
f.Type().Params().SetFields(append(params, f.Type().Params().FieldSlice()...))
|
|
fn.Dcl = append(decls, fn.Dcl...)
|
|
}
|
|
|
|
dowidth(f.Type())
|
|
fn.SetType(f.Type()) // update type of ODCLFUNC
|
|
} else {
|
|
// The closure is not called, so it is going to stay as closure.
|
|
var body []ir.Node
|
|
offset := int64(Widthptr)
|
|
for _, v := range fn.ClosureVars {
|
|
// cv refers to the field inside of closure OSTRUCTLIT.
|
|
typ := v.Type()
|
|
if !v.Byval() {
|
|
typ = types.NewPtr(typ)
|
|
}
|
|
offset = Rnd(offset, int64(typ.Align))
|
|
cr := ir.NewClosureRead(typ, offset)
|
|
offset += typ.Width
|
|
|
|
if v.Byval() && v.Type().Width <= int64(2*Widthptr) {
|
|
// If it is a small variable captured by value, downgrade it to PAUTO.
|
|
v.SetClass(ir.PAUTO)
|
|
fn.Dcl = append(fn.Dcl, v)
|
|
body = append(body, ir.NewAssignStmt(base.Pos, v, cr))
|
|
} else {
|
|
// Declare variable holding addresses taken from closure
|
|
// and initialize in entry prologue.
|
|
addr := NewName(lookup("&" + v.Sym().Name))
|
|
addr.SetType(types.NewPtr(v.Type()))
|
|
addr.SetClass(ir.PAUTO)
|
|
addr.SetUsed(true)
|
|
addr.Curfn = fn
|
|
fn.Dcl = append(fn.Dcl, addr)
|
|
v.Heapaddr = addr
|
|
var src ir.Node = cr
|
|
if v.Byval() {
|
|
src = nodAddr(cr)
|
|
}
|
|
body = append(body, ir.NewAssignStmt(base.Pos, addr, src))
|
|
}
|
|
}
|
|
|
|
if len(body) > 0 {
|
|
typecheckslice(body, ctxStmt)
|
|
fn.Enter.Set(body)
|
|
fn.SetNeedctxt(true)
|
|
}
|
|
}
|
|
|
|
base.Pos = lno
|
|
}
|
|
|
|
// hasemptycvars reports whether closure clo has an
|
|
// empty list of captured vars.
|
|
func hasemptycvars(clo *ir.ClosureExpr) bool {
|
|
return len(clo.Func().ClosureVars) == 0
|
|
}
|
|
|
|
// closuredebugruntimecheck applies boilerplate checks for debug flags
|
|
// and compiling runtime
|
|
func closuredebugruntimecheck(clo *ir.ClosureExpr) {
|
|
if base.Debug.Closure > 0 {
|
|
if clo.Esc() == EscHeap {
|
|
base.WarnfAt(clo.Pos(), "heap closure, captured vars = %v", clo.Func().ClosureVars)
|
|
} else {
|
|
base.WarnfAt(clo.Pos(), "stack closure, captured vars = %v", clo.Func().ClosureVars)
|
|
}
|
|
}
|
|
if base.Flag.CompilingRuntime && clo.Esc() == EscHeap {
|
|
base.ErrorfAt(clo.Pos(), "heap-allocated closure, not allowed in runtime")
|
|
}
|
|
}
|
|
|
|
// closureType returns the struct type used to hold all the information
|
|
// needed in the closure for clo (clo must be a OCLOSURE node).
|
|
// The address of a variable of the returned type can be cast to a func.
|
|
func closureType(clo *ir.ClosureExpr) *types.Type {
|
|
// Create closure in the form of a composite literal.
|
|
// supposing the closure captures an int i and a string s
|
|
// and has one float64 argument and no results,
|
|
// the generated code looks like:
|
|
//
|
|
// clos = &struct{.F uintptr; i *int; s *string}{func.1, &i, &s}
|
|
//
|
|
// The use of the struct provides type information to the garbage
|
|
// collector so that it can walk the closure. We could use (in this case)
|
|
// [3]unsafe.Pointer instead, but that would leave the gc in the dark.
|
|
// The information appears in the binary in the form of type descriptors;
|
|
// the struct is unnamed so that closures in multiple packages with the
|
|
// same struct type can share the descriptor.
|
|
fields := []*ir.Field{
|
|
namedfield(".F", types.Types[types.TUINTPTR]),
|
|
}
|
|
for _, v := range clo.Func().ClosureVars {
|
|
typ := v.Type()
|
|
if !v.Byval() {
|
|
typ = types.NewPtr(typ)
|
|
}
|
|
fields = append(fields, symfield(v.Sym(), typ))
|
|
}
|
|
typ := tostruct(fields)
|
|
typ.SetNoalg(true)
|
|
return typ
|
|
}
|
|
|
|
func walkclosure(clo *ir.ClosureExpr, init *ir.Nodes) ir.Node {
|
|
fn := clo.Func()
|
|
|
|
// If no closure vars, don't bother wrapping.
|
|
if hasemptycvars(clo) {
|
|
if base.Debug.Closure > 0 {
|
|
base.WarnfAt(clo.Pos(), "closure converted to global")
|
|
}
|
|
return fn.Nname
|
|
}
|
|
closuredebugruntimecheck(clo)
|
|
|
|
typ := closureType(clo)
|
|
|
|
clos := ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, ir.TypeNode(typ).(ir.Ntype), nil)
|
|
clos.SetEsc(clo.Esc())
|
|
clos.PtrList().Set(append([]ir.Node{ir.NewUnaryExpr(base.Pos, ir.OCFUNC, fn.Nname)}, fn.ClosureEnter.Slice()...))
|
|
|
|
addr := nodAddr(clos)
|
|
addr.SetEsc(clo.Esc())
|
|
|
|
// Force type conversion from *struct to the func type.
|
|
cfn := convnop(addr, clo.Type())
|
|
|
|
// non-escaping temp to use, if any.
|
|
if x := clo.Prealloc; x != nil {
|
|
if !types.Identical(typ, x.Type()) {
|
|
panic("closure type does not match order's assigned type")
|
|
}
|
|
addr.SetRight(x)
|
|
clo.Prealloc = nil
|
|
}
|
|
|
|
return walkexpr(cfn, init)
|
|
}
|
|
|
|
func typecheckpartialcall(n ir.Node, sym *types.Sym) *ir.CallPartExpr {
|
|
switch n.Op() {
|
|
case ir.ODOTINTER, ir.ODOTMETH:
|
|
break
|
|
|
|
default:
|
|
base.Fatalf("invalid typecheckpartialcall")
|
|
}
|
|
dot := n.(*ir.SelectorExpr)
|
|
|
|
// Create top-level function.
|
|
fn := makepartialcall(dot, dot.Type(), sym)
|
|
fn.SetWrapper(true)
|
|
|
|
return ir.NewCallPartExpr(dot.Pos(), dot.Left(), dot.Selection, fn)
|
|
}
|
|
|
|
// makepartialcall returns a DCLFUNC node representing the wrapper function (*-fm) needed
|
|
// for partial calls.
|
|
func makepartialcall(dot *ir.SelectorExpr, t0 *types.Type, meth *types.Sym) *ir.Func {
|
|
rcvrtype := dot.Left().Type()
|
|
sym := methodSymSuffix(rcvrtype, meth, "-fm")
|
|
|
|
if sym.Uniq() {
|
|
return sym.Def.(*ir.Func)
|
|
}
|
|
sym.SetUniq(true)
|
|
|
|
savecurfn := Curfn
|
|
saveLineNo := base.Pos
|
|
Curfn = nil
|
|
|
|
// Set line number equal to the line number where the method is declared.
|
|
var m *types.Field
|
|
if lookdot0(meth, rcvrtype, &m, false) == 1 && m.Pos.IsKnown() {
|
|
base.Pos = m.Pos
|
|
}
|
|
// Note: !m.Pos.IsKnown() happens for method expressions where
|
|
// the method is implicitly declared. The Error method of the
|
|
// built-in error type is one such method. We leave the line
|
|
// number at the use of the method expression in this
|
|
// case. See issue 29389.
|
|
|
|
tfn := ir.NewFuncType(base.Pos, nil,
|
|
structargs(t0.Params(), true),
|
|
structargs(t0.Results(), false))
|
|
|
|
fn := dclfunc(sym, tfn)
|
|
fn.SetDupok(true)
|
|
fn.SetNeedctxt(true)
|
|
|
|
// Declare and initialize variable holding receiver.
|
|
cr := ir.NewClosureRead(rcvrtype, Rnd(int64(Widthptr), int64(rcvrtype.Align)))
|
|
ptr := NewName(lookup(".this"))
|
|
declare(ptr, ir.PAUTO)
|
|
ptr.SetUsed(true)
|
|
var body []ir.Node
|
|
if rcvrtype.IsPtr() || rcvrtype.IsInterface() {
|
|
ptr.SetType(rcvrtype)
|
|
body = append(body, ir.NewAssignStmt(base.Pos, ptr, cr))
|
|
} else {
|
|
ptr.SetType(types.NewPtr(rcvrtype))
|
|
body = append(body, ir.NewAssignStmt(base.Pos, ptr, nodAddr(cr)))
|
|
}
|
|
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, ir.NewSelectorExpr(base.Pos, ir.OXDOT, ptr, meth), nil)
|
|
call.PtrList().Set(paramNnames(tfn.Type()))
|
|
call.SetIsDDD(tfn.Type().IsVariadic())
|
|
if t0.NumResults() != 0 {
|
|
ret := ir.NewReturnStmt(base.Pos, nil)
|
|
ret.PtrList().Set1(call)
|
|
body = append(body, ret)
|
|
} else {
|
|
body = append(body, call)
|
|
}
|
|
|
|
fn.PtrBody().Set(body)
|
|
funcbody()
|
|
|
|
typecheckFunc(fn)
|
|
// Need to typecheck the body of the just-generated wrapper.
|
|
// typecheckslice() requires that Curfn is set when processing an ORETURN.
|
|
Curfn = fn
|
|
typecheckslice(fn.Body().Slice(), ctxStmt)
|
|
sym.Def = fn
|
|
Target.Decls = append(Target.Decls, fn)
|
|
Curfn = savecurfn
|
|
base.Pos = saveLineNo
|
|
|
|
return fn
|
|
}
|
|
|
|
// partialCallType returns the struct type used to hold all the information
|
|
// needed in the closure for n (n must be a OCALLPART node).
|
|
// The address of a variable of the returned type can be cast to a func.
|
|
func partialCallType(n *ir.CallPartExpr) *types.Type {
|
|
t := tostruct([]*ir.Field{
|
|
namedfield("F", types.Types[types.TUINTPTR]),
|
|
namedfield("R", n.Left().Type()),
|
|
})
|
|
t.SetNoalg(true)
|
|
return t
|
|
}
|
|
|
|
func walkpartialcall(n *ir.CallPartExpr, init *ir.Nodes) ir.Node {
|
|
// Create closure in the form of a composite literal.
|
|
// For x.M with receiver (x) type T, the generated code looks like:
|
|
//
|
|
// clos = &struct{F uintptr; R T}{T.M·f, x}
|
|
//
|
|
// Like walkclosure above.
|
|
|
|
if n.Left().Type().IsInterface() {
|
|
// Trigger panic for method on nil interface now.
|
|
// Otherwise it happens in the wrapper and is confusing.
|
|
n.SetLeft(cheapexpr(n.Left(), init))
|
|
n.SetLeft(walkexpr(n.Left(), nil))
|
|
|
|
tab := typecheck(ir.NewUnaryExpr(base.Pos, ir.OITAB, n.Left()), ctxExpr)
|
|
|
|
c := ir.NewUnaryExpr(base.Pos, ir.OCHECKNIL, tab)
|
|
c.SetTypecheck(1)
|
|
init.Append(c)
|
|
}
|
|
|
|
typ := partialCallType(n)
|
|
|
|
clos := ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, ir.TypeNode(typ).(ir.Ntype), nil)
|
|
clos.SetEsc(n.Esc())
|
|
clos.PtrList().Set2(ir.NewUnaryExpr(base.Pos, ir.OCFUNC, n.Func().Nname), n.Left())
|
|
|
|
addr := nodAddr(clos)
|
|
addr.SetEsc(n.Esc())
|
|
|
|
// Force type conversion from *struct to the func type.
|
|
cfn := convnop(addr, n.Type())
|
|
|
|
// non-escaping temp to use, if any.
|
|
if x := n.Prealloc; x != nil {
|
|
if !types.Identical(typ, x.Type()) {
|
|
panic("partial call type does not match order's assigned type")
|
|
}
|
|
addr.SetRight(x)
|
|
n.Prealloc = nil
|
|
}
|
|
|
|
return walkexpr(cfn, init)
|
|
}
|
|
|
|
// callpartMethod returns the *types.Field representing the method
|
|
// referenced by method value n.
|
|
func callpartMethod(n ir.Node) *types.Field {
|
|
return n.(*ir.CallPartExpr).Method
|
|
}
|