mirror of https://github.com/golang/go.git
368 lines
11 KiB
Go
368 lines
11 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
//go:generate go run mkbuiltin.go
|
|
|
|
package ssagen
|
|
|
|
import (
|
|
"fmt"
|
|
"io/ioutil"
|
|
"log"
|
|
"os"
|
|
"strings"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/escape"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/objabi"
|
|
)
|
|
|
|
// useNewABIWrapGen returns TRUE if the compiler should generate an
|
|
// ABI wrapper for the function 'f'.
|
|
func useABIWrapGen(f *ir.Func) bool {
|
|
if !base.Flag.ABIWrap {
|
|
return false
|
|
}
|
|
|
|
// Support limit option for bisecting.
|
|
if base.Flag.ABIWrapLimit == 1 {
|
|
return false
|
|
}
|
|
if base.Flag.ABIWrapLimit < 1 {
|
|
return true
|
|
}
|
|
base.Flag.ABIWrapLimit--
|
|
if base.Debug.ABIWrap != 0 && base.Flag.ABIWrapLimit == 1 {
|
|
fmt.Fprintf(os.Stderr, "=-= limit reached after new wrapper for %s\n",
|
|
f.LSym.Name)
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// symabiDefs and symabiRefs record the defined and referenced ABIs of
|
|
// symbols required by non-Go code. These are keyed by link symbol
|
|
// name, where the local package prefix is always `"".`
|
|
var symabiDefs, symabiRefs map[string]obj.ABI
|
|
|
|
func CgoSymABIs() {
|
|
// The linker expects an ABI0 wrapper for all cgo-exported
|
|
// functions.
|
|
for _, prag := range typecheck.Target.CgoPragmas {
|
|
switch prag[0] {
|
|
case "cgo_export_static", "cgo_export_dynamic":
|
|
if symabiRefs == nil {
|
|
symabiRefs = make(map[string]obj.ABI)
|
|
}
|
|
symabiRefs[prag[1]] = obj.ABI0
|
|
}
|
|
}
|
|
}
|
|
|
|
// ReadSymABIs reads a symabis file that specifies definitions and
|
|
// references of text symbols by ABI.
|
|
//
|
|
// The symabis format is a set of lines, where each line is a sequence
|
|
// of whitespace-separated fields. The first field is a verb and is
|
|
// either "def" for defining a symbol ABI or "ref" for referencing a
|
|
// symbol using an ABI. For both "def" and "ref", the second field is
|
|
// the symbol name and the third field is the ABI name, as one of the
|
|
// named cmd/internal/obj.ABI constants.
|
|
func ReadSymABIs(file, myimportpath string) {
|
|
data, err := ioutil.ReadFile(file)
|
|
if err != nil {
|
|
log.Fatalf("-symabis: %v", err)
|
|
}
|
|
|
|
symabiDefs = make(map[string]obj.ABI)
|
|
symabiRefs = make(map[string]obj.ABI)
|
|
|
|
localPrefix := ""
|
|
if myimportpath != "" {
|
|
// Symbols in this package may be written either as
|
|
// "".X or with the package's import path already in
|
|
// the symbol.
|
|
localPrefix = objabi.PathToPrefix(myimportpath) + "."
|
|
}
|
|
|
|
for lineNum, line := range strings.Split(string(data), "\n") {
|
|
lineNum++ // 1-based
|
|
line = strings.TrimSpace(line)
|
|
if line == "" || strings.HasPrefix(line, "#") {
|
|
continue
|
|
}
|
|
|
|
parts := strings.Fields(line)
|
|
switch parts[0] {
|
|
case "def", "ref":
|
|
// Parse line.
|
|
if len(parts) != 3 {
|
|
log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0])
|
|
}
|
|
sym, abistr := parts[1], parts[2]
|
|
abi, valid := obj.ParseABI(abistr)
|
|
if !valid {
|
|
log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr)
|
|
}
|
|
|
|
// If the symbol is already prefixed with
|
|
// myimportpath, rewrite it to start with ""
|
|
// so it matches the compiler's internal
|
|
// symbol names.
|
|
if localPrefix != "" && strings.HasPrefix(sym, localPrefix) {
|
|
sym = `"".` + sym[len(localPrefix):]
|
|
}
|
|
|
|
// Record for later.
|
|
if parts[0] == "def" {
|
|
symabiDefs[sym] = abi
|
|
} else {
|
|
symabiRefs[sym] = abi
|
|
}
|
|
default:
|
|
log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0])
|
|
}
|
|
}
|
|
}
|
|
|
|
// InitLSym defines f's obj.LSym and initializes it based on the
|
|
// properties of f. This includes setting the symbol flags and ABI and
|
|
// creating and initializing related DWARF symbols.
|
|
//
|
|
// InitLSym must be called exactly once per function and must be
|
|
// called for both functions with bodies and functions without bodies.
|
|
// For body-less functions, we only create the LSym; for functions
|
|
// with bodies call a helper to setup up / populate the LSym.
|
|
func InitLSym(f *ir.Func, hasBody bool) {
|
|
// FIXME: for new-style ABI wrappers, we set up the lsym at the
|
|
// point the wrapper is created.
|
|
if f.LSym != nil && base.Flag.ABIWrap {
|
|
return
|
|
}
|
|
selectLSym(f, hasBody)
|
|
if hasBody {
|
|
setupTextLSym(f, 0)
|
|
}
|
|
}
|
|
|
|
// selectLSym sets up the LSym for a given function, and
|
|
// makes calls to helpers to create ABI wrappers if needed.
|
|
func selectLSym(f *ir.Func, hasBody bool) {
|
|
if f.LSym != nil {
|
|
base.Fatalf("Func.initLSym called twice")
|
|
}
|
|
|
|
if nam := f.Nname; !ir.IsBlank(nam) {
|
|
|
|
var wrapperABI obj.ABI
|
|
needABIWrapper := false
|
|
defABI, hasDefABI := symabiDefs[nam.Sym().LinksymName()]
|
|
if hasDefABI && defABI == obj.ABI0 {
|
|
// Symbol is defined as ABI0. Create an
|
|
// Internal -> ABI0 wrapper.
|
|
f.LSym = nam.Sym().LinksymABI0()
|
|
needABIWrapper, wrapperABI = true, obj.ABIInternal
|
|
} else {
|
|
f.LSym = nam.Sym().Linksym()
|
|
// No ABI override. Check that the symbol is
|
|
// using the expected ABI.
|
|
want := obj.ABIInternal
|
|
if f.LSym.ABI() != want {
|
|
base.Fatalf("function symbol %s has the wrong ABI %v, expected %v", f.LSym.Name, f.LSym.ABI(), want)
|
|
}
|
|
}
|
|
if f.Pragma&ir.Systemstack != 0 {
|
|
f.LSym.Set(obj.AttrCFunc, true)
|
|
}
|
|
|
|
isLinknameExported := nam.Sym().Linkname != "" && (hasBody || hasDefABI)
|
|
if abi, ok := symabiRefs[f.LSym.Name]; (ok && abi == obj.ABI0) || isLinknameExported {
|
|
// Either 1) this symbol is definitely
|
|
// referenced as ABI0 from this package; or 2)
|
|
// this symbol is defined in this package but
|
|
// given a linkname, indicating that it may be
|
|
// referenced from another package. Create an
|
|
// ABI0 -> Internal wrapper so it can be
|
|
// called as ABI0. In case 2, it's important
|
|
// that we know it's defined in this package
|
|
// since other packages may "pull" symbols
|
|
// using linkname and we don't want to create
|
|
// duplicate ABI wrappers.
|
|
if f.LSym.ABI() != obj.ABI0 {
|
|
needABIWrapper, wrapperABI = true, obj.ABI0
|
|
}
|
|
}
|
|
|
|
if needABIWrapper {
|
|
if !useABIWrapGen(f) {
|
|
// Fallback: use alias instead. FIXME.
|
|
|
|
// These LSyms have the same name as the
|
|
// native function, so we create them directly
|
|
// rather than looking them up. The uniqueness
|
|
// of f.lsym ensures uniqueness of asym.
|
|
asym := &obj.LSym{
|
|
Name: f.LSym.Name,
|
|
Type: objabi.SABIALIAS,
|
|
R: []obj.Reloc{{Sym: f.LSym}}, // 0 size, so "informational"
|
|
}
|
|
asym.SetABI(wrapperABI)
|
|
asym.Set(obj.AttrDuplicateOK, true)
|
|
base.Ctxt.ABIAliases = append(base.Ctxt.ABIAliases, asym)
|
|
} else {
|
|
if base.Debug.ABIWrap != 0 {
|
|
fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %s.%s\n",
|
|
wrapperABI, 1-wrapperABI, types.LocalPkg.Path, f.LSym.Name)
|
|
}
|
|
makeABIWrapper(f, wrapperABI)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// makeABIWrapper creates a new function that wraps a cross-ABI call
|
|
// to "f". The wrapper is marked as an ABIWRAPPER.
|
|
func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {
|
|
|
|
// Q: is this needed?
|
|
savepos := base.Pos
|
|
savedclcontext := typecheck.DeclContext
|
|
savedcurfn := ir.CurFunc
|
|
|
|
base.Pos = base.AutogeneratedPos
|
|
typecheck.DeclContext = ir.PEXTERN
|
|
|
|
// At the moment we don't support wrapping a method, we'd need machinery
|
|
// below to handle the receiver. Panic if we see this scenario.
|
|
ft := f.Nname.Ntype.Type()
|
|
if ft.NumRecvs() != 0 {
|
|
panic("makeABIWrapper support for wrapping methods not implemented")
|
|
}
|
|
|
|
// Manufacture a new func type to use for the wrapper.
|
|
var noReceiver *ir.Field
|
|
tfn := ir.NewFuncType(base.Pos,
|
|
noReceiver,
|
|
typecheck.NewFuncParams(ft.Params(), true),
|
|
typecheck.NewFuncParams(ft.Results(), false))
|
|
|
|
// Reuse f's types.Sym to create a new ODCLFUNC/function.
|
|
fn := typecheck.DeclFunc(f.Nname.Sym(), tfn)
|
|
fn.SetDupok(true)
|
|
fn.SetWrapper(true) // ignore frame for panic+recover matching
|
|
|
|
// Select LSYM now.
|
|
asym := base.Ctxt.LookupABI(f.LSym.Name, wrapperABI)
|
|
asym.Type = objabi.STEXT
|
|
if fn.LSym != nil {
|
|
panic("unexpected")
|
|
}
|
|
fn.LSym = asym
|
|
|
|
// ABI0-to-ABIInternal wrappers will be mainly loading params from
|
|
// stack into registers (and/or storing stack locations back to
|
|
// registers after the wrapped call); in most cases they won't
|
|
// need to allocate stack space, so it should be OK to mark them
|
|
// as NOSPLIT in these cases. In addition, my assumption is that
|
|
// functions written in assembly are NOSPLIT in most (but not all)
|
|
// cases. In the case of an ABIInternal target that has too many
|
|
// parameters to fit into registers, the wrapper would need to
|
|
// allocate stack space, but this seems like an unlikely scenario.
|
|
// Hence: mark these wrappers NOSPLIT.
|
|
//
|
|
// ABIInternal-to-ABI0 wrappers on the other hand will be taking
|
|
// things in registers and pushing them onto the stack prior to
|
|
// the ABI0 call, meaning that they will always need to allocate
|
|
// stack space. If the compiler marks them as NOSPLIT this seems
|
|
// as though it could lead to situations where the the linker's
|
|
// nosplit-overflow analysis would trigger a link failure. On the
|
|
// other hand if they not tagged NOSPLIT then this could cause
|
|
// problems when building the runtime (since there may be calls to
|
|
// asm routine in cases where it's not safe to grow the stack). In
|
|
// most cases the wrapper would be (in effect) inlined, but are
|
|
// there (perhaps) indirect calls from the runtime that could run
|
|
// into trouble here.
|
|
// FIXME: at the moment all.bash does not pass when I leave out
|
|
// NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT.
|
|
setupTextLSym(fn, obj.NOSPLIT|obj.ABIWRAPPER)
|
|
|
|
// Generate call. Use tail call if no params and no returns,
|
|
// but a regular call otherwise.
|
|
//
|
|
// Note: ideally we would be using a tail call in cases where
|
|
// there are params but no returns for ABI0->ABIInternal wrappers,
|
|
// provided that all params fit into registers (e.g. we don't have
|
|
// to allocate any stack space). Doing this will require some
|
|
// extra work in typecheck/walk/ssa, might want to add a new node
|
|
// OTAILCALL or something to this effect.
|
|
var tail ir.Node
|
|
if tfn.Type().NumResults() == 0 && tfn.Type().NumParams() == 0 && tfn.Type().NumRecvs() == 0 {
|
|
tail = ir.NewBranchStmt(base.Pos, ir.ORETJMP, f.Nname.Sym())
|
|
} else {
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, f.Nname, nil)
|
|
call.Args.Set(ir.ParamNames(tfn.Type()))
|
|
call.IsDDD = tfn.Type().IsVariadic()
|
|
tail = call
|
|
if tfn.Type().NumResults() > 0 {
|
|
n := ir.NewReturnStmt(base.Pos, nil)
|
|
n.Results = []ir.Node{call}
|
|
tail = n
|
|
}
|
|
}
|
|
fn.Body.Append(tail)
|
|
|
|
typecheck.FinishFuncBody()
|
|
if base.Debug.DclStack != 0 {
|
|
types.CheckDclstack()
|
|
}
|
|
|
|
typecheck.Func(fn)
|
|
ir.CurFunc = fn
|
|
typecheck.Stmts(fn.Body)
|
|
|
|
escape.Batch([]*ir.Func{fn}, false)
|
|
|
|
typecheck.Target.Decls = append(typecheck.Target.Decls, fn)
|
|
|
|
// Restore previous context.
|
|
base.Pos = savepos
|
|
typecheck.DeclContext = savedclcontext
|
|
ir.CurFunc = savedcurfn
|
|
}
|
|
|
|
// setupTextLsym initializes the LSym for a with-body text symbol.
|
|
func setupTextLSym(f *ir.Func, flag int) {
|
|
if f.Dupok() {
|
|
flag |= obj.DUPOK
|
|
}
|
|
if f.Wrapper() {
|
|
flag |= obj.WRAPPER
|
|
}
|
|
if f.Needctxt() {
|
|
flag |= obj.NEEDCTXT
|
|
}
|
|
if f.Pragma&ir.Nosplit != 0 {
|
|
flag |= obj.NOSPLIT
|
|
}
|
|
if f.ReflectMethod() {
|
|
flag |= obj.REFLECTMETHOD
|
|
}
|
|
|
|
// Clumsy but important.
|
|
// See test/recover.go for test cases and src/reflect/value.go
|
|
// for the actual functions being considered.
|
|
if base.Ctxt.Pkgpath == "reflect" {
|
|
switch f.Sym().Name {
|
|
case "callReflect", "callMethod":
|
|
flag |= obj.WRAPPER
|
|
}
|
|
}
|
|
|
|
base.Ctxt.InitTextSym(f.LSym, flag)
|
|
}
|