go/src/time/sleep.go

206 lines
7.5 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package time
import (
"internal/godebug"
"unsafe"
)
// Sleep pauses the current goroutine for at least the duration d.
// A negative or zero duration causes Sleep to return immediately.
func Sleep(d Duration)
var asynctimerchan = godebug.New("asynctimerchan")
// syncTimer returns c as an unsafe.Pointer, for passing to newTimer.
// If the GODEBUG asynctimerchan has disabled the async timer chan
// code, then syncTimer always returns nil, to disable the special
// channel code paths in the runtime.
func syncTimer(c chan Time) unsafe.Pointer {
// If asynctimerchan=1, we don't even tell the runtime
// about channel timers, so that we get the pre-Go 1.23 code paths.
if asynctimerchan.Value() == "1" {
return nil
}
// Otherwise pass to runtime.
return *(*unsafe.Pointer)(unsafe.Pointer(&c))
}
// when is a helper function for setting the 'when' field of a runtimeTimer.
// It returns what the time will be, in nanoseconds, Duration d in the future.
// If d is negative, it is ignored. If the returned value would be less than
// zero because of an overflow, MaxInt64 is returned.
func when(d Duration) int64 {
if d <= 0 {
return runtimeNano()
}
t := runtimeNano() + int64(d)
if t < 0 {
// N.B. runtimeNano() and d are always positive, so addition
// (including overflow) will never result in t == 0.
t = 1<<63 - 1 // math.MaxInt64
}
return t
}
// These functions are pushed to package time from package runtime.
// The arg cp is a chan Time, but the declaration in runtime uses a pointer,
// so we use a pointer here too. This keeps some tools that aggressively
// compare linknamed symbol definitions happier.
//
//go:linkname newTimer
func newTimer(when, period int64, f func(any, uintptr, int64), arg any, cp unsafe.Pointer) *Timer
//go:linkname stopTimer
func stopTimer(*Timer) bool
//go:linkname resetTimer
func resetTimer(t *Timer, when, period int64) bool
// Note: The runtime knows the layout of struct Timer, since newTimer allocates it.
// The runtime also knows that Ticker and Timer have the same layout.
// There are extra fields after the channel, reserved for the runtime
// and inaccessible to users.
// The Timer type represents a single event.
// When the Timer expires, the current time will be sent on C,
// unless the Timer was created by AfterFunc.
// A Timer must be created with NewTimer or AfterFunc.
type Timer struct {
C <-chan Time
initTimer bool
}
// Stop prevents the Timer from firing.
// It returns true if the call stops the timer, false if the timer has already
// expired or been stopped.
// Stop does not close the channel, to prevent a read from the channel succeeding
// incorrectly.
//
// To ensure the channel is empty after a call to Stop, check the
// return value and drain the channel.
// For example, assuming the program has not received from t.C already:
//
// if !t.Stop() {
// <-t.C
// }
//
// This cannot be done concurrent to other receives from the Timer's
// channel or other calls to the Timer's Stop method.
//
// For a timer created with AfterFunc(d, f), if t.Stop returns false, then the timer
// has already expired and the function f has been started in its own goroutine;
// Stop does not wait for f to complete before returning.
// If the caller needs to know whether f is completed, it must coordinate
// with f explicitly.
func (t *Timer) Stop() bool {
if !t.initTimer {
panic("time: Stop called on uninitialized Timer")
}
return stopTimer(t)
}
// NewTimer creates a new Timer that will send
// the current time on its channel after at least duration d.
//
// Before Go 1.23, the garbage collector did not recover
// timers that had not yet expired or been stopped, so code often
// immediately deferred t.Stop after calling NewTimer, to make
// the timer recoverable when it was no longer needed.
// As of Go 1.23, the garbage collector can recover unreferenced
// timers, even if they haven't expired or been stopped.
// The Stop method is no longer necessary to help the garbage collector.
// (Code may of course still want to call Stop to stop the timer for other reasons.)
func NewTimer(d Duration) *Timer {
c := make(chan Time, 1)
t := (*Timer)(newTimer(when(d), 0, sendTime, c, syncTimer(c)))
t.C = c
return t
}
// Reset changes the timer to expire after duration d.
// It returns true if the timer had been active, false if the timer had
// expired or been stopped.
//
// For a Timer created with NewTimer, Reset should be invoked only on
// stopped or expired timers with drained channels.
//
// If a program has already received a value from t.C, the timer is known
// to have expired and the channel drained, so t.Reset can be used directly.
// If a program has not yet received a value from t.C, however,
// the timer must be stopped and—if Stop reports that the timer expired
// before being stopped—the channel explicitly drained:
//
// if !t.Stop() {
// <-t.C
// }
// t.Reset(d)
//
// This should not be done concurrent to other receives from the Timer's
// channel.
//
// Note that it is not possible to use Reset's return value correctly, as there
// is a race condition between draining the channel and the new timer expiring.
// Reset should always be invoked on stopped or expired channels, as described above.
// The return value exists to preserve compatibility with existing programs.
//
// For a Timer created with AfterFunc(d, f), Reset either reschedules
// when f will run, in which case Reset returns true, or schedules f
// to run again, in which case it returns false.
// When Reset returns false, Reset neither waits for the prior f to
// complete before returning nor does it guarantee that the subsequent
// goroutine running f does not run concurrently with the prior
// one. If the caller needs to know whether the prior execution of
// f is completed, it must coordinate with f explicitly.
func (t *Timer) Reset(d Duration) bool {
if !t.initTimer {
panic("time: Reset called on uninitialized Timer")
}
w := when(d)
return resetTimer(t, w, 0)
}
// sendTime does a non-blocking send of the current time on c.
func sendTime(c any, seq uintptr, delta int64) {
// delta is how long ago the channel send was supposed to happen.
// The current time can be arbitrarily far into the future, because the runtime
// can delay a sendTime call until a goroutines tries to receive from
// the channel. Subtract delta to go back to the old time that we
// used to send.
select {
case c.(chan Time) <- Now().Add(Duration(-delta)):
default:
}
}
// After waits for the duration to elapse and then sends the current time
// on the returned channel.
// It is equivalent to NewTimer(d).C.
//
// Before Go 1.23, this documentation warned that the underlying
// Timer would not be recovered by the garbage collector until the
// timer fired, and that if efficiency was a concern, code should use
// NewTimer instead and call Timer.Stop if the timer is no longer needed.
// As of Go 1.23, the garbage collector can recover unreferenced,
// unstopped timers. There is no reason to prefer NewTimer when After will do.
func After(d Duration) <-chan Time {
return NewTimer(d).C
}
// AfterFunc waits for the duration to elapse and then calls f
// in its own goroutine. It returns a Timer that can
// be used to cancel the call using its Stop method.
// The returned Timer's C field is not used and will be nil.
func AfterFunc(d Duration, f func()) *Timer {
return (*Timer)(newTimer(when(d), 0, goFunc, f, nil))
}
func goFunc(arg any, seq uintptr, delta int64) {
go arg.(func())()
}