mirror of https://github.com/golang/go.git
855 lines
23 KiB
C
855 lines
23 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
// Page heap.
|
||
//
|
||
// See malloc.h for overview.
|
||
//
|
||
// When a MSpan is in the heap free list, state == MSpanFree
|
||
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
|
||
//
|
||
// When a MSpan is allocated, state == MSpanInUse
|
||
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
|
||
|
||
#include "runtime.h"
|
||
#include "arch_GOARCH.h"
|
||
#include "malloc.h"
|
||
|
||
static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32);
|
||
static bool MHeap_Grow(MHeap*, uintptr);
|
||
static void MHeap_FreeLocked(MHeap*, MSpan*);
|
||
static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
|
||
static MSpan *BestFit(MSpan*, uintptr, MSpan*);
|
||
|
||
static void
|
||
RecordSpan(void *vh, byte *p)
|
||
{
|
||
MHeap *h;
|
||
MSpan *s;
|
||
MSpan **all;
|
||
uint32 cap;
|
||
|
||
h = vh;
|
||
s = (MSpan*)p;
|
||
if(h->nspan >= h->nspancap) {
|
||
cap = 64*1024/sizeof(all[0]);
|
||
if(cap < h->nspancap*3/2)
|
||
cap = h->nspancap*3/2;
|
||
all = (MSpan**)runtime·SysAlloc(cap*sizeof(all[0]), &mstats.other_sys);
|
||
if(all == nil)
|
||
runtime·throw("runtime: cannot allocate memory");
|
||
if(h->allspans) {
|
||
runtime·memmove(all, h->allspans, h->nspancap*sizeof(all[0]));
|
||
// Don't free the old array if it's referenced by sweep.
|
||
// See the comment in mgc0.c.
|
||
if(h->allspans != runtime·mheap.sweepspans)
|
||
runtime·SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats.other_sys);
|
||
}
|
||
h->allspans = all;
|
||
h->nspancap = cap;
|
||
}
|
||
h->allspans[h->nspan++] = s;
|
||
}
|
||
|
||
// Initialize the heap; fetch memory using alloc.
|
||
void
|
||
runtime·MHeap_Init(MHeap *h)
|
||
{
|
||
uint32 i;
|
||
|
||
runtime·FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &mstats.mspan_sys);
|
||
runtime·FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &mstats.mcache_sys);
|
||
runtime·FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &mstats.other_sys);
|
||
runtime·FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &mstats.other_sys);
|
||
// h->mapcache needs no init
|
||
for(i=0; i<nelem(h->free); i++) {
|
||
runtime·MSpanList_Init(&h->free[i]);
|
||
runtime·MSpanList_Init(&h->busy[i]);
|
||
}
|
||
runtime·MSpanList_Init(&h->freelarge);
|
||
runtime·MSpanList_Init(&h->busylarge);
|
||
for(i=0; i<nelem(h->central); i++)
|
||
runtime·MCentral_Init(&h->central[i], i);
|
||
}
|
||
|
||
void
|
||
runtime·MHeap_MapSpans(MHeap *h)
|
||
{
|
||
uintptr n;
|
||
|
||
// Map spans array, PageSize at a time.
|
||
n = (uintptr)h->arena_used;
|
||
n -= (uintptr)h->arena_start;
|
||
n = n / PageSize * sizeof(h->spans[0]);
|
||
n = ROUND(n, PageSize);
|
||
if(h->spans_mapped >= n)
|
||
return;
|
||
runtime·SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, &mstats.other_sys);
|
||
h->spans_mapped = n;
|
||
}
|
||
|
||
// Sweeps spans in list until reclaims at least npages into heap.
|
||
// Returns the actual number of pages reclaimed.
|
||
static uintptr
|
||
MHeap_ReclaimList(MHeap *h, MSpan *list, uintptr npages)
|
||
{
|
||
MSpan *s;
|
||
uintptr n;
|
||
uint32 sg;
|
||
|
||
n = 0;
|
||
sg = runtime·mheap.sweepgen;
|
||
retry:
|
||
for(s = list->next; s != list; s = s->next) {
|
||
if(s->sweepgen == sg-2 && runtime·cas(&s->sweepgen, sg-2, sg-1)) {
|
||
runtime·MSpanList_Remove(s);
|
||
// swept spans are at the end of the list
|
||
runtime·MSpanList_InsertBack(list, s);
|
||
runtime·unlock(h);
|
||
n += runtime·MSpan_Sweep(s);
|
||
runtime·lock(h);
|
||
if(n >= npages)
|
||
return n;
|
||
// the span could have been moved elsewhere
|
||
goto retry;
|
||
}
|
||
if(s->sweepgen == sg-1) {
|
||
// the span is being sweept by background sweeper, skip
|
||
continue;
|
||
}
|
||
// already swept empty span,
|
||
// all subsequent ones must also be either swept or in process of sweeping
|
||
break;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
// Sweeps and reclaims at least npage pages into heap.
|
||
// Called before allocating npage pages.
|
||
static void
|
||
MHeap_Reclaim(MHeap *h, uintptr npage)
|
||
{
|
||
uintptr reclaimed, n;
|
||
|
||
// First try to sweep busy spans with large objects of size >= npage,
|
||
// this has good chances of reclaiming the necessary space.
|
||
for(n=npage; n < nelem(h->busy); n++) {
|
||
if(MHeap_ReclaimList(h, &h->busy[n], npage))
|
||
return; // Bingo!
|
||
}
|
||
|
||
// Then -- even larger objects.
|
||
if(MHeap_ReclaimList(h, &h->busylarge, npage))
|
||
return; // Bingo!
|
||
|
||
// Now try smaller objects.
|
||
// One such object is not enough, so we need to reclaim several of them.
|
||
reclaimed = 0;
|
||
for(n=0; n < npage && n < nelem(h->busy); n++) {
|
||
reclaimed += MHeap_ReclaimList(h, &h->busy[n], npage-reclaimed);
|
||
if(reclaimed >= npage)
|
||
return;
|
||
}
|
||
|
||
// Now sweep everything that is not yet swept.
|
||
runtime·unlock(h);
|
||
for(;;) {
|
||
n = runtime·sweepone();
|
||
if(n == -1) // all spans are swept
|
||
break;
|
||
reclaimed += n;
|
||
if(reclaimed >= npage)
|
||
break;
|
||
}
|
||
runtime·lock(h);
|
||
}
|
||
|
||
// Allocate a new span of npage pages from the heap
|
||
// and record its size class in the HeapMap and HeapMapCache.
|
||
MSpan*
|
||
runtime·MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool zeroed)
|
||
{
|
||
MSpan *s;
|
||
|
||
runtime·lock(h);
|
||
mstats.heap_alloc += m->mcache->local_cachealloc;
|
||
m->mcache->local_cachealloc = 0;
|
||
s = MHeap_AllocLocked(h, npage, sizeclass);
|
||
if(s != nil) {
|
||
mstats.heap_inuse += npage<<PageShift;
|
||
if(large) {
|
||
mstats.heap_objects++;
|
||
mstats.heap_alloc += npage<<PageShift;
|
||
// Swept spans are at the end of lists.
|
||
if(s->npages < nelem(h->free))
|
||
runtime·MSpanList_InsertBack(&h->busy[s->npages], s);
|
||
else
|
||
runtime·MSpanList_InsertBack(&h->busylarge, s);
|
||
}
|
||
}
|
||
runtime·unlock(h);
|
||
if(s != nil && *(uintptr*)(s->start<<PageShift) != 0 && zeroed)
|
||
runtime·memclr((byte*)(s->start<<PageShift), s->npages<<PageShift);
|
||
return s;
|
||
}
|
||
|
||
static MSpan*
|
||
MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass)
|
||
{
|
||
uintptr n;
|
||
MSpan *s, *t;
|
||
PageID p;
|
||
|
||
// To prevent excessive heap growth, before allocating n pages
|
||
// we need to sweep and reclaim at least n pages.
|
||
if(!h->sweepdone)
|
||
MHeap_Reclaim(h, npage);
|
||
|
||
// Try in fixed-size lists up to max.
|
||
for(n=npage; n < nelem(h->free); n++) {
|
||
if(!runtime·MSpanList_IsEmpty(&h->free[n])) {
|
||
s = h->free[n].next;
|
||
goto HaveSpan;
|
||
}
|
||
}
|
||
|
||
// Best fit in list of large spans.
|
||
if((s = MHeap_AllocLarge(h, npage)) == nil) {
|
||
if(!MHeap_Grow(h, npage))
|
||
return nil;
|
||
if((s = MHeap_AllocLarge(h, npage)) == nil)
|
||
return nil;
|
||
}
|
||
|
||
HaveSpan:
|
||
// Mark span in use.
|
||
if(s->state != MSpanFree)
|
||
runtime·throw("MHeap_AllocLocked - MSpan not free");
|
||
if(s->npages < npage)
|
||
runtime·throw("MHeap_AllocLocked - bad npages");
|
||
runtime·MSpanList_Remove(s);
|
||
runtime·atomicstore(&s->sweepgen, h->sweepgen);
|
||
s->state = MSpanInUse;
|
||
mstats.heap_idle -= s->npages<<PageShift;
|
||
mstats.heap_released -= s->npreleased<<PageShift;
|
||
if(s->npreleased > 0) {
|
||
// We have called runtime·SysUnused with these pages, and on
|
||
// Unix systems it called madvise. At this point at least
|
||
// some BSD-based kernels will return these pages either as
|
||
// zeros or with the old data. For our caller, the first word
|
||
// in the page indicates whether the span contains zeros or
|
||
// not (this word was set when the span was freed by
|
||
// MCentral_Free or runtime·MCentral_FreeSpan). If the first
|
||
// page in the span is returned as zeros, and some subsequent
|
||
// page is returned with the old data, then we will be
|
||
// returning a span that is assumed to be all zeros, but the
|
||
// actual data will not be all zeros. Avoid that problem by
|
||
// explicitly marking the span as not being zeroed, just in
|
||
// case. The beadbead constant we use here means nothing, it
|
||
// is just a unique constant not seen elsewhere in the
|
||
// runtime, as a clue in case it turns up unexpectedly in
|
||
// memory or in a stack trace.
|
||
runtime·SysUsed((void*)(s->start<<PageShift), s->npages<<PageShift);
|
||
*(uintptr*)(s->start<<PageShift) = (uintptr)0xbeadbeadbeadbeadULL;
|
||
}
|
||
s->npreleased = 0;
|
||
|
||
if(s->npages > npage) {
|
||
// Trim extra and put it back in the heap.
|
||
t = runtime·FixAlloc_Alloc(&h->spanalloc);
|
||
runtime·MSpan_Init(t, s->start + npage, s->npages - npage);
|
||
s->npages = npage;
|
||
p = t->start;
|
||
p -= ((uintptr)h->arena_start>>PageShift);
|
||
if(p > 0)
|
||
h->spans[p-1] = s;
|
||
h->spans[p] = t;
|
||
h->spans[p+t->npages-1] = t;
|
||
*(uintptr*)(t->start<<PageShift) = *(uintptr*)(s->start<<PageShift); // copy "needs zeroing" mark
|
||
runtime·atomicstore(&t->sweepgen, h->sweepgen);
|
||
t->state = MSpanInUse;
|
||
MHeap_FreeLocked(h, t);
|
||
t->unusedsince = s->unusedsince; // preserve age
|
||
}
|
||
s->unusedsince = 0;
|
||
|
||
// Record span info, because gc needs to be
|
||
// able to map interior pointer to containing span.
|
||
s->sizeclass = sizeclass;
|
||
s->elemsize = (sizeclass==0 ? s->npages<<PageShift : runtime·class_to_size[sizeclass]);
|
||
s->types.compression = MTypes_Empty;
|
||
p = s->start;
|
||
p -= ((uintptr)h->arena_start>>PageShift);
|
||
for(n=0; n<npage; n++)
|
||
h->spans[p+n] = s;
|
||
return s;
|
||
}
|
||
|
||
// Allocate a span of exactly npage pages from the list of large spans.
|
||
static MSpan*
|
||
MHeap_AllocLarge(MHeap *h, uintptr npage)
|
||
{
|
||
return BestFit(&h->freelarge, npage, nil);
|
||
}
|
||
|
||
// Search list for smallest span with >= npage pages.
|
||
// If there are multiple smallest spans, take the one
|
||
// with the earliest starting address.
|
||
static MSpan*
|
||
BestFit(MSpan *list, uintptr npage, MSpan *best)
|
||
{
|
||
MSpan *s;
|
||
|
||
for(s=list->next; s != list; s=s->next) {
|
||
if(s->npages < npage)
|
||
continue;
|
||
if(best == nil
|
||
|| s->npages < best->npages
|
||
|| (s->npages == best->npages && s->start < best->start))
|
||
best = s;
|
||
}
|
||
return best;
|
||
}
|
||
|
||
// Try to add at least npage pages of memory to the heap,
|
||
// returning whether it worked.
|
||
static bool
|
||
MHeap_Grow(MHeap *h, uintptr npage)
|
||
{
|
||
uintptr ask;
|
||
void *v;
|
||
MSpan *s;
|
||
PageID p;
|
||
|
||
// Ask for a big chunk, to reduce the number of mappings
|
||
// the operating system needs to track; also amortizes
|
||
// the overhead of an operating system mapping.
|
||
// Allocate a multiple of 64kB (16 pages).
|
||
npage = (npage+15)&~15;
|
||
ask = npage<<PageShift;
|
||
if(ask < HeapAllocChunk)
|
||
ask = HeapAllocChunk;
|
||
|
||
v = runtime·MHeap_SysAlloc(h, ask);
|
||
if(v == nil) {
|
||
if(ask > (npage<<PageShift)) {
|
||
ask = npage<<PageShift;
|
||
v = runtime·MHeap_SysAlloc(h, ask);
|
||
}
|
||
if(v == nil) {
|
||
runtime·printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats.heap_sys);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// Create a fake "in use" span and free it, so that the
|
||
// right coalescing happens.
|
||
s = runtime·FixAlloc_Alloc(&h->spanalloc);
|
||
runtime·MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
|
||
p = s->start;
|
||
p -= ((uintptr)h->arena_start>>PageShift);
|
||
h->spans[p] = s;
|
||
h->spans[p + s->npages - 1] = s;
|
||
runtime·atomicstore(&s->sweepgen, h->sweepgen);
|
||
s->state = MSpanInUse;
|
||
MHeap_FreeLocked(h, s);
|
||
return true;
|
||
}
|
||
|
||
// Look up the span at the given address.
|
||
// Address is guaranteed to be in map
|
||
// and is guaranteed to be start or end of span.
|
||
MSpan*
|
||
runtime·MHeap_Lookup(MHeap *h, void *v)
|
||
{
|
||
uintptr p;
|
||
|
||
p = (uintptr)v;
|
||
p -= (uintptr)h->arena_start;
|
||
return h->spans[p >> PageShift];
|
||
}
|
||
|
||
// Look up the span at the given address.
|
||
// Address is *not* guaranteed to be in map
|
||
// and may be anywhere in the span.
|
||
// Map entries for the middle of a span are only
|
||
// valid for allocated spans. Free spans may have
|
||
// other garbage in their middles, so we have to
|
||
// check for that.
|
||
MSpan*
|
||
runtime·MHeap_LookupMaybe(MHeap *h, void *v)
|
||
{
|
||
MSpan *s;
|
||
PageID p, q;
|
||
|
||
if((byte*)v < h->arena_start || (byte*)v >= h->arena_used)
|
||
return nil;
|
||
p = (uintptr)v>>PageShift;
|
||
q = p;
|
||
q -= (uintptr)h->arena_start >> PageShift;
|
||
s = h->spans[q];
|
||
if(s == nil || p < s->start || v >= s->limit || s->state != MSpanInUse)
|
||
return nil;
|
||
return s;
|
||
}
|
||
|
||
// Free the span back into the heap.
|
||
void
|
||
runtime·MHeap_Free(MHeap *h, MSpan *s, int32 acct)
|
||
{
|
||
runtime·lock(h);
|
||
mstats.heap_alloc += m->mcache->local_cachealloc;
|
||
m->mcache->local_cachealloc = 0;
|
||
mstats.heap_inuse -= s->npages<<PageShift;
|
||
if(acct) {
|
||
mstats.heap_alloc -= s->npages<<PageShift;
|
||
mstats.heap_objects--;
|
||
}
|
||
MHeap_FreeLocked(h, s);
|
||
runtime·unlock(h);
|
||
}
|
||
|
||
static void
|
||
MHeap_FreeLocked(MHeap *h, MSpan *s)
|
||
{
|
||
uintptr *sp, *tp;
|
||
MSpan *t;
|
||
PageID p;
|
||
|
||
s->types.compression = MTypes_Empty;
|
||
|
||
if(s->state != MSpanInUse || s->ref != 0 || s->sweepgen != h->sweepgen) {
|
||
runtime·printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d sweepgen %d/%d\n",
|
||
s, s->start<<PageShift, s->state, s->ref, s->sweepgen, h->sweepgen);
|
||
runtime·throw("MHeap_FreeLocked - invalid free");
|
||
}
|
||
mstats.heap_idle += s->npages<<PageShift;
|
||
s->state = MSpanFree;
|
||
runtime·MSpanList_Remove(s);
|
||
sp = (uintptr*)(s->start<<PageShift);
|
||
// Stamp newly unused spans. The scavenger will use that
|
||
// info to potentially give back some pages to the OS.
|
||
s->unusedsince = runtime·nanotime();
|
||
s->npreleased = 0;
|
||
|
||
// Coalesce with earlier, later spans.
|
||
p = s->start;
|
||
p -= (uintptr)h->arena_start >> PageShift;
|
||
if(p > 0 && (t = h->spans[p-1]) != nil && t->state != MSpanInUse) {
|
||
if(t->npreleased == 0) { // cant't touch this otherwise
|
||
tp = (uintptr*)(t->start<<PageShift);
|
||
*tp |= *sp; // propagate "needs zeroing" mark
|
||
}
|
||
s->start = t->start;
|
||
s->npages += t->npages;
|
||
s->npreleased = t->npreleased; // absorb released pages
|
||
p -= t->npages;
|
||
h->spans[p] = s;
|
||
runtime·MSpanList_Remove(t);
|
||
t->state = MSpanDead;
|
||
runtime·FixAlloc_Free(&h->spanalloc, t);
|
||
}
|
||
if((p+s->npages)*sizeof(h->spans[0]) < h->spans_mapped && (t = h->spans[p+s->npages]) != nil && t->state != MSpanInUse) {
|
||
if(t->npreleased == 0) { // cant't touch this otherwise
|
||
tp = (uintptr*)(t->start<<PageShift);
|
||
*sp |= *tp; // propagate "needs zeroing" mark
|
||
}
|
||
s->npages += t->npages;
|
||
s->npreleased += t->npreleased;
|
||
h->spans[p + s->npages - 1] = s;
|
||
runtime·MSpanList_Remove(t);
|
||
t->state = MSpanDead;
|
||
runtime·FixAlloc_Free(&h->spanalloc, t);
|
||
}
|
||
|
||
// Insert s into appropriate list.
|
||
if(s->npages < nelem(h->free))
|
||
runtime·MSpanList_Insert(&h->free[s->npages], s);
|
||
else
|
||
runtime·MSpanList_Insert(&h->freelarge, s);
|
||
}
|
||
|
||
static void
|
||
forcegchelper(Note *note)
|
||
{
|
||
runtime·gc(1);
|
||
runtime·notewakeup(note);
|
||
}
|
||
|
||
static uintptr
|
||
scavengelist(MSpan *list, uint64 now, uint64 limit)
|
||
{
|
||
uintptr released, sumreleased;
|
||
MSpan *s;
|
||
|
||
if(runtime·MSpanList_IsEmpty(list))
|
||
return 0;
|
||
|
||
sumreleased = 0;
|
||
for(s=list->next; s != list; s=s->next) {
|
||
if((now - s->unusedsince) > limit && s->npreleased != s->npages) {
|
||
released = (s->npages - s->npreleased) << PageShift;
|
||
mstats.heap_released += released;
|
||
sumreleased += released;
|
||
s->npreleased = s->npages;
|
||
runtime·SysUnused((void*)(s->start << PageShift), s->npages << PageShift);
|
||
}
|
||
}
|
||
return sumreleased;
|
||
}
|
||
|
||
static void
|
||
scavenge(int32 k, uint64 now, uint64 limit)
|
||
{
|
||
uint32 i;
|
||
uintptr sumreleased;
|
||
MHeap *h;
|
||
|
||
h = &runtime·mheap;
|
||
sumreleased = 0;
|
||
for(i=0; i < nelem(h->free); i++)
|
||
sumreleased += scavengelist(&h->free[i], now, limit);
|
||
sumreleased += scavengelist(&h->freelarge, now, limit);
|
||
|
||
if(runtime·debug.gctrace > 0) {
|
||
if(sumreleased > 0)
|
||
runtime·printf("scvg%d: %D MB released\n", k, (uint64)sumreleased>>20);
|
||
runtime·printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n",
|
||
k, mstats.heap_inuse>>20, mstats.heap_idle>>20, mstats.heap_sys>>20,
|
||
mstats.heap_released>>20, (mstats.heap_sys - mstats.heap_released)>>20);
|
||
}
|
||
}
|
||
|
||
static FuncVal forcegchelperv = {(void(*)(void))forcegchelper};
|
||
|
||
// Release (part of) unused memory to OS.
|
||
// Goroutine created at startup.
|
||
// Loop forever.
|
||
void
|
||
runtime·MHeap_Scavenger(void)
|
||
{
|
||
MHeap *h;
|
||
uint64 tick, now, forcegc, limit;
|
||
int32 k;
|
||
Note note, *notep;
|
||
|
||
g->issystem = true;
|
||
g->isbackground = true;
|
||
|
||
// If we go two minutes without a garbage collection, force one to run.
|
||
forcegc = 2*60*1e9;
|
||
// If a span goes unused for 5 minutes after a garbage collection,
|
||
// we hand it back to the operating system.
|
||
limit = 5*60*1e9;
|
||
// Make wake-up period small enough for the sampling to be correct.
|
||
if(forcegc < limit)
|
||
tick = forcegc/2;
|
||
else
|
||
tick = limit/2;
|
||
|
||
h = &runtime·mheap;
|
||
for(k=0;; k++) {
|
||
runtime·noteclear(¬e);
|
||
runtime·notetsleepg(¬e, tick);
|
||
|
||
runtime·lock(h);
|
||
now = runtime·nanotime();
|
||
if(now - mstats.last_gc > forcegc) {
|
||
runtime·unlock(h);
|
||
// The scavenger can not block other goroutines,
|
||
// otherwise deadlock detector can fire spuriously.
|
||
// GC blocks other goroutines via the runtime·worldsema.
|
||
runtime·noteclear(¬e);
|
||
notep = ¬e;
|
||
runtime·newproc1(&forcegchelperv, (byte*)¬ep, sizeof(notep), 0, runtime·MHeap_Scavenger);
|
||
runtime·notetsleepg(¬e, -1);
|
||
if(runtime·debug.gctrace > 0)
|
||
runtime·printf("scvg%d: GC forced\n", k);
|
||
runtime·lock(h);
|
||
now = runtime·nanotime();
|
||
}
|
||
scavenge(k, now, limit);
|
||
runtime·unlock(h);
|
||
}
|
||
}
|
||
|
||
void
|
||
runtime∕debug·freeOSMemory(void)
|
||
{
|
||
runtime·gc(1);
|
||
runtime·lock(&runtime·mheap);
|
||
scavenge(-1, ~(uintptr)0, 0);
|
||
runtime·unlock(&runtime·mheap);
|
||
}
|
||
|
||
// Initialize a new span with the given start and npages.
|
||
void
|
||
runtime·MSpan_Init(MSpan *span, PageID start, uintptr npages)
|
||
{
|
||
span->next = nil;
|
||
span->prev = nil;
|
||
span->start = start;
|
||
span->npages = npages;
|
||
span->freelist = nil;
|
||
span->ref = 0;
|
||
span->sizeclass = 0;
|
||
span->elemsize = 0;
|
||
span->state = MSpanDead;
|
||
span->unusedsince = 0;
|
||
span->npreleased = 0;
|
||
span->types.compression = MTypes_Empty;
|
||
span->specialLock.key = 0;
|
||
span->specials = nil;
|
||
}
|
||
|
||
// Initialize an empty doubly-linked list.
|
||
void
|
||
runtime·MSpanList_Init(MSpan *list)
|
||
{
|
||
list->state = MSpanListHead;
|
||
list->next = list;
|
||
list->prev = list;
|
||
}
|
||
|
||
void
|
||
runtime·MSpanList_Remove(MSpan *span)
|
||
{
|
||
if(span->prev == nil && span->next == nil)
|
||
return;
|
||
span->prev->next = span->next;
|
||
span->next->prev = span->prev;
|
||
span->prev = nil;
|
||
span->next = nil;
|
||
}
|
||
|
||
bool
|
||
runtime·MSpanList_IsEmpty(MSpan *list)
|
||
{
|
||
return list->next == list;
|
||
}
|
||
|
||
void
|
||
runtime·MSpanList_Insert(MSpan *list, MSpan *span)
|
||
{
|
||
if(span->next != nil || span->prev != nil) {
|
||
runtime·printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
|
||
runtime·throw("MSpanList_Insert");
|
||
}
|
||
span->next = list->next;
|
||
span->prev = list;
|
||
span->next->prev = span;
|
||
span->prev->next = span;
|
||
}
|
||
|
||
void
|
||
runtime·MSpanList_InsertBack(MSpan *list, MSpan *span)
|
||
{
|
||
if(span->next != nil || span->prev != nil) {
|
||
runtime·printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
|
||
runtime·throw("MSpanList_Insert");
|
||
}
|
||
span->next = list;
|
||
span->prev = list->prev;
|
||
span->next->prev = span;
|
||
span->prev->next = span;
|
||
}
|
||
|
||
// Adds the special record s to the list of special records for
|
||
// the object p. All fields of s should be filled in except for
|
||
// offset & next, which this routine will fill in.
|
||
// Returns true if the special was successfully added, false otherwise.
|
||
// (The add will fail only if a record with the same p and s->kind
|
||
// already exists.)
|
||
static bool
|
||
addspecial(void *p, Special *s)
|
||
{
|
||
MSpan *span;
|
||
Special **t, *x;
|
||
uintptr offset;
|
||
byte kind;
|
||
|
||
span = runtime·MHeap_LookupMaybe(&runtime·mheap, p);
|
||
if(span == nil)
|
||
runtime·throw("addspecial on invalid pointer");
|
||
|
||
// Ensure that the span is swept.
|
||
// GC accesses specials list w/o locks. And it's just much safer.
|
||
runtime·MSpan_EnsureSwept(span);
|
||
|
||
offset = (uintptr)p - (span->start << PageShift);
|
||
kind = s->kind;
|
||
|
||
runtime·lock(&span->specialLock);
|
||
|
||
// Find splice point, check for existing record.
|
||
t = &span->specials;
|
||
while((x = *t) != nil) {
|
||
if(offset == x->offset && kind == x->kind) {
|
||
runtime·unlock(&span->specialLock);
|
||
return false; // already exists
|
||
}
|
||
if(offset < x->offset || (offset == x->offset && kind < x->kind))
|
||
break;
|
||
t = &x->next;
|
||
}
|
||
// Splice in record, fill in offset.
|
||
s->offset = offset;
|
||
s->next = x;
|
||
*t = s;
|
||
runtime·unlock(&span->specialLock);
|
||
return true;
|
||
}
|
||
|
||
// Removes the Special record of the given kind for the object p.
|
||
// Returns the record if the record existed, nil otherwise.
|
||
// The caller must FixAlloc_Free the result.
|
||
static Special*
|
||
removespecial(void *p, byte kind)
|
||
{
|
||
MSpan *span;
|
||
Special *s, **t;
|
||
uintptr offset;
|
||
|
||
span = runtime·MHeap_LookupMaybe(&runtime·mheap, p);
|
||
if(span == nil)
|
||
runtime·throw("removespecial on invalid pointer");
|
||
|
||
// Ensure that the span is swept.
|
||
// GC accesses specials list w/o locks. And it's just much safer.
|
||
runtime·MSpan_EnsureSwept(span);
|
||
|
||
offset = (uintptr)p - (span->start << PageShift);
|
||
|
||
runtime·lock(&span->specialLock);
|
||
t = &span->specials;
|
||
while((s = *t) != nil) {
|
||
// This function is used for finalizers only, so we don't check for
|
||
// "interior" specials (p must be exactly equal to s->offset).
|
||
if(offset == s->offset && kind == s->kind) {
|
||
*t = s->next;
|
||
runtime·unlock(&span->specialLock);
|
||
return s;
|
||
}
|
||
t = &s->next;
|
||
}
|
||
runtime·unlock(&span->specialLock);
|
||
return nil;
|
||
}
|
||
|
||
// Adds a finalizer to the object p. Returns true if it succeeded.
|
||
bool
|
||
runtime·addfinalizer(void *p, FuncVal *f, uintptr nret, Type *fint, PtrType *ot)
|
||
{
|
||
SpecialFinalizer *s;
|
||
|
||
runtime·lock(&runtime·mheap.speciallock);
|
||
s = runtime·FixAlloc_Alloc(&runtime·mheap.specialfinalizeralloc);
|
||
runtime·unlock(&runtime·mheap.speciallock);
|
||
s->kind = KindSpecialFinalizer;
|
||
s->fn = f;
|
||
s->nret = nret;
|
||
s->fint = fint;
|
||
s->ot = ot;
|
||
if(addspecial(p, s))
|
||
return true;
|
||
|
||
// There was an old finalizer
|
||
runtime·lock(&runtime·mheap.speciallock);
|
||
runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, s);
|
||
runtime·unlock(&runtime·mheap.speciallock);
|
||
return false;
|
||
}
|
||
|
||
// Removes the finalizer (if any) from the object p.
|
||
void
|
||
runtime·removefinalizer(void *p)
|
||
{
|
||
SpecialFinalizer *s;
|
||
|
||
s = (SpecialFinalizer*)removespecial(p, KindSpecialFinalizer);
|
||
if(s == nil)
|
||
return; // there wasn't a finalizer to remove
|
||
runtime·lock(&runtime·mheap.speciallock);
|
||
runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, s);
|
||
runtime·unlock(&runtime·mheap.speciallock);
|
||
}
|
||
|
||
// Set the heap profile bucket associated with addr to b.
|
||
void
|
||
runtime·setprofilebucket(void *p, Bucket *b)
|
||
{
|
||
SpecialProfile *s;
|
||
|
||
runtime·lock(&runtime·mheap.speciallock);
|
||
s = runtime·FixAlloc_Alloc(&runtime·mheap.specialprofilealloc);
|
||
runtime·unlock(&runtime·mheap.speciallock);
|
||
s->kind = KindSpecialProfile;
|
||
s->b = b;
|
||
if(!addspecial(p, s))
|
||
runtime·throw("setprofilebucket: profile already set");
|
||
}
|
||
|
||
// Do whatever cleanup needs to be done to deallocate s. It has
|
||
// already been unlinked from the MSpan specials list.
|
||
// Returns true if we should keep working on deallocating p.
|
||
bool
|
||
runtime·freespecial(Special *s, void *p, uintptr size, bool freed)
|
||
{
|
||
SpecialFinalizer *sf;
|
||
SpecialProfile *sp;
|
||
|
||
switch(s->kind) {
|
||
case KindSpecialFinalizer:
|
||
sf = (SpecialFinalizer*)s;
|
||
runtime·queuefinalizer(p, sf->fn, sf->nret, sf->fint, sf->ot);
|
||
runtime·lock(&runtime·mheap.speciallock);
|
||
runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, sf);
|
||
runtime·unlock(&runtime·mheap.speciallock);
|
||
return false; // don't free p until finalizer is done
|
||
case KindSpecialProfile:
|
||
sp = (SpecialProfile*)s;
|
||
runtime·MProf_Free(sp->b, p, size, freed);
|
||
runtime·lock(&runtime·mheap.speciallock);
|
||
runtime·FixAlloc_Free(&runtime·mheap.specialprofilealloc, sp);
|
||
runtime·unlock(&runtime·mheap.speciallock);
|
||
return true;
|
||
default:
|
||
runtime·throw("bad special kind");
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// Free all special records for p.
|
||
void
|
||
runtime·freeallspecials(MSpan *span, void *p, uintptr size)
|
||
{
|
||
Special *s, **t, *list;
|
||
uintptr offset;
|
||
|
||
// first, collect all specials into the list; then, free them
|
||
// this is required to not cause deadlock between span->specialLock and proflock
|
||
list = nil;
|
||
offset = (uintptr)p - (span->start << PageShift);
|
||
runtime·lock(&span->specialLock);
|
||
t = &span->specials;
|
||
while((s = *t) != nil) {
|
||
if(offset + size <= s->offset)
|
||
break;
|
||
if(offset <= s->offset) {
|
||
*t = s->next;
|
||
s->next = list;
|
||
list = s;
|
||
} else
|
||
t = &s->next;
|
||
}
|
||
runtime·unlock(&span->specialLock);
|
||
|
||
while(list != nil) {
|
||
s = list;
|
||
list = s->next;
|
||
if(!runtime·freespecial(s, p, size, true))
|
||
runtime·throw("can't explicitly free an object with a finalizer");
|
||
}
|
||
}
|