// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package lcs import ( "fmt" "strings" ) // non generic code. The names have Old at the end to indicate they are the // the implementation that doesn't use generics. // Compute the Diffs and the lcs. func Compute(a, b interface{}, limit int) ([]Diff, lcs) { var ans lcs g := newegraph(a, b, limit) ans = g.twosided() diffs := g.fromlcs(ans) return diffs, ans } // editGraph carries the information for computing the lcs for []byte, []rune, or []string. type editGraph struct { eq eq // how to compare elements of A, B, and convert slices to strings vf, vb label // forward and backward labels limit int // maximal value of D // the bounding rectangle of the current edit graph lx, ly, ux, uy int delta int // common subexpression: (ux-lx)-(uy-ly) } // abstraction in place of generic type eq interface { eq(i, j int) bool substr(i, j int) string // string from b[i:j] lena() int lenb() int } type byteeq struct { a, b []byte // the input was ascii. perhaps these could be strings } func (x *byteeq) eq(i, j int) bool { return x.a[i] == x.b[j] } func (x *byteeq) substr(i, j int) string { return string(x.b[i:j]) } func (x *byteeq) lena() int { return int(len(x.a)) } func (x *byteeq) lenb() int { return int(len(x.b)) } type runeeq struct { a, b []rune } func (x *runeeq) eq(i, j int) bool { return x.a[i] == x.b[j] } func (x *runeeq) substr(i, j int) string { return string(x.b[i:j]) } func (x *runeeq) lena() int { return int(len(x.a)) } func (x *runeeq) lenb() int { return int(len(x.b)) } type lineeq struct { a, b []string } func (x *lineeq) eq(i, j int) bool { return x.a[i] == x.b[j] } func (x *lineeq) substr(i, j int) string { return strings.Join(x.b[i:j], "") } func (x *lineeq) lena() int { return int(len(x.a)) } func (x *lineeq) lenb() int { return int(len(x.b)) } func neweq(a, b interface{}) eq { switch x := a.(type) { case []byte: return &byteeq{a: x, b: b.([]byte)} case []rune: return &runeeq{a: x, b: b.([]rune)} case []string: return &lineeq{a: x, b: b.([]string)} default: panic(fmt.Sprintf("unexpected type %T in neweq", x)) } } func (g *editGraph) fromlcs(lcs lcs) []Diff { var ans []Diff var pa, pb int // offsets in a, b for _, l := range lcs { if pa < l.X && pb < l.Y { ans = append(ans, Diff{pa, l.X, g.eq.substr(pb, l.Y)}) } else if pa < l.X { ans = append(ans, Diff{pa, l.X, ""}) } else if pb < l.Y { ans = append(ans, Diff{pa, l.X, g.eq.substr(pb, l.Y)}) } pa = l.X + l.Len pb = l.Y + l.Len } if pa < g.eq.lena() && pb < g.eq.lenb() { ans = append(ans, Diff{pa, g.eq.lena(), g.eq.substr(pb, g.eq.lenb())}) } else if pa < g.eq.lena() { ans = append(ans, Diff{pa, g.eq.lena(), ""}) } else if pb < g.eq.lenb() { ans = append(ans, Diff{pa, g.eq.lena(), g.eq.substr(pb, g.eq.lenb())}) } return ans } func newegraph(a, b interface{}, limit int) *editGraph { if limit <= 0 { limit = 1 << 25 // effectively infinity } var alen, blen int switch a := a.(type) { case []byte: alen, blen = len(a), len(b.([]byte)) case []rune: alen, blen = len(a), len(b.([]rune)) case []string: alen, blen = len(a), len(b.([]string)) default: panic(fmt.Sprintf("unexpected type %T in newegraph", a)) } ans := &editGraph{eq: neweq(a, b), vf: newtriang(limit), vb: newtriang(limit), limit: int(limit), ux: alen, uy: blen, delta: alen - blen} return ans } // --- FORWARD --- // fdone decides if the forwward path has reached the upper right // corner of the rectangele. If so, it also returns the computed lcs. func (e *editGraph) fdone(D, k int) (bool, lcs) { // x, y, k are relative to the rectangle x := e.vf.get(D, k) y := x - k if x == e.ux && y == e.uy { return true, e.forwardlcs(D, k) } return false, nil } // run the forward algorithm, until success or up to the limit on D. func (e *editGraph) forward() lcs { e.setForward(0, 0, e.lx) if ok, ans := e.fdone(0, 0); ok { return ans } // from D to D+1 for D := 0; D < e.limit; D++ { e.setForward(D+1, -(D + 1), e.getForward(D, -D)) if ok, ans := e.fdone(D+1, -(D + 1)); ok { return ans } e.setForward(D+1, D+1, e.getForward(D, D)+1) if ok, ans := e.fdone(D+1, D+1); ok { return ans } for k := -D + 1; k <= D-1; k += 2 { // these are tricky and easy to get backwards lookv := e.lookForward(k, e.getForward(D, k-1)+1) lookh := e.lookForward(k, e.getForward(D, k+1)) if lookv > lookh { e.setForward(D+1, k, lookv) } else { e.setForward(D+1, k, lookh) } if ok, ans := e.fdone(D+1, k); ok { return ans } } } // D is too large // find the D path with maximal x+y inside the rectangle and // use that to compute the found part of the lcs kmax := -e.limit - 1 diagmax := -1 for k := -e.limit; k <= e.limit; k += 2 { x := e.getForward(e.limit, k) y := x - k if x+y > diagmax && x <= e.ux && y <= e.uy { diagmax, kmax = x+y, k } } return e.forwardlcs(e.limit, kmax) } // recover the lcs by backtracking from the farthest point reached func (e *editGraph) forwardlcs(D, k int) lcs { var ans lcs for x := e.getForward(D, k); x != 0 || x-k != 0; { if ok(D-1, k-1) && x-1 == e.getForward(D-1, k-1) { // if (x-1,y) is labelled D-1, x--,D--,k--,continue D, k, x = D-1, k-1, x-1 continue } else if ok(D-1, k+1) && x == e.getForward(D-1, k+1) { // if (x,y-1) is labelled D-1, x, D--,k++, continue D, k = D-1, k+1 continue } // if (x-1,y-1)--(x,y) is a diagonal, prepend,x--,y--, continue y := x - k realx, realy := x+e.lx, y+e.ly if e.eq.eq(realx-1, realy-1) { ans = prependlcs(ans, realx-1, realy-1) x-- } else { panic("broken path") } } return ans } // start at (x,y), go up the diagonal as far as possible, // and label the result with d func (e *editGraph) lookForward(k, relx int) int { rely := relx - k x, y := relx+e.lx, rely+e.ly for x < e.ux && y < e.uy && e.eq.eq(x, y) { x++ y++ } return x } func (e *editGraph) setForward(d, k, relx int) { x := e.lookForward(k, relx) e.vf.set(d, k, x-e.lx) } func (e *editGraph) getForward(d, k int) int { x := e.vf.get(d, k) return x } // --- BACKWARD --- // bdone decides if the backward path has reached the lower left corner func (e *editGraph) bdone(D, k int) (bool, lcs) { // x, y, k are relative to the rectangle x := e.vb.get(D, k) y := x - (k + e.delta) if x == 0 && y == 0 { return true, e.backwardlcs(D, k) } return false, nil } // run the backward algorithm, until success or up to the limit on D. func (e *editGraph) backward() lcs { e.setBackward(0, 0, e.ux) if ok, ans := e.bdone(0, 0); ok { return ans } // from D to D+1 for D := 0; D < e.limit; D++ { e.setBackward(D+1, -(D + 1), e.getBackward(D, -D)-1) if ok, ans := e.bdone(D+1, -(D + 1)); ok { return ans } e.setBackward(D+1, D+1, e.getBackward(D, D)) if ok, ans := e.bdone(D+1, D+1); ok { return ans } for k := -D + 1; k <= D-1; k += 2 { // these are tricky and easy to get wrong lookv := e.lookBackward(k, e.getBackward(D, k-1)) lookh := e.lookBackward(k, e.getBackward(D, k+1)-1) if lookv < lookh { e.setBackward(D+1, k, lookv) } else { e.setBackward(D+1, k, lookh) } if ok, ans := e.bdone(D+1, k); ok { return ans } } } // D is too large // find the D path with minimal x+y inside the rectangle and // use that to compute the part of the lcs found kmax := -e.limit - 1 diagmin := 1 << 25 for k := -e.limit; k <= e.limit; k += 2 { x := e.getBackward(e.limit, k) y := x - (k + e.delta) if x+y < diagmin && x >= 0 && y >= 0 { diagmin, kmax = x+y, k } } if kmax < -e.limit { panic(fmt.Sprintf("no paths when limit=%d?", e.limit)) } return e.backwardlcs(e.limit, kmax) } // recover the lcs by backtracking func (e *editGraph) backwardlcs(D, k int) lcs { var ans lcs for x := e.getBackward(D, k); x != e.ux || x-(k+e.delta) != e.uy; { if ok(D-1, k-1) && x == e.getBackward(D-1, k-1) { // D--, k--, x unchanged D, k = D-1, k-1 continue } else if ok(D-1, k+1) && x+1 == e.getBackward(D-1, k+1) { // D--, k++, x++ D, k, x = D-1, k+1, x+1 continue } y := x - (k + e.delta) realx, realy := x+e.lx, y+e.ly if e.eq.eq(realx, realy) { ans = appendlcs(ans, realx, realy) x++ } else { panic("broken path") } } return ans } // start at (x,y), go down the diagonal as far as possible, func (e *editGraph) lookBackward(k, relx int) int { rely := relx - (k + e.delta) // forward k = k + e.delta x, y := relx+e.lx, rely+e.ly for x > 0 && y > 0 && e.eq.eq(x-1, y-1) { x-- y-- } return x } // convert to rectangle, and label the result with d func (e *editGraph) setBackward(d, k, relx int) { x := e.lookBackward(k, relx) e.vb.set(d, k, x-e.lx) } func (e *editGraph) getBackward(d, k int) int { x := e.vb.get(d, k) return x } // -- TWOSIDED --- func (e *editGraph) twosided() lcs { // The termination condition could be improved, as either the forward // or backward pass could succeed before Myers' Lemma applies. // Aside from questions of efficiency (is the extra testing cost-effective) // this is more likely to matter when e.limit is reached. e.setForward(0, 0, e.lx) e.setBackward(0, 0, e.ux) // from D to D+1 for D := 0; D < e.limit; D++ { // just finished a backwards pass, so check if got, ok := e.twoDone(D, D); ok { return e.twolcs(D, D, got) } // do a forwards pass (D to D+1) e.setForward(D+1, -(D + 1), e.getForward(D, -D)) e.setForward(D+1, D+1, e.getForward(D, D)+1) for k := -D + 1; k <= D-1; k += 2 { // these are tricky and easy to get backwards lookv := e.lookForward(k, e.getForward(D, k-1)+1) lookh := e.lookForward(k, e.getForward(D, k+1)) if lookv > lookh { e.setForward(D+1, k, lookv) } else { e.setForward(D+1, k, lookh) } } // just did a forward pass, so check if got, ok := e.twoDone(D+1, D); ok { return e.twolcs(D+1, D, got) } // do a backward pass, D to D+1 e.setBackward(D+1, -(D + 1), e.getBackward(D, -D)-1) e.setBackward(D+1, D+1, e.getBackward(D, D)) for k := -D + 1; k <= D-1; k += 2 { // these are tricky and easy to get wrong lookv := e.lookBackward(k, e.getBackward(D, k-1)) lookh := e.lookBackward(k, e.getBackward(D, k+1)-1) if lookv < lookh { e.setBackward(D+1, k, lookv) } else { e.setBackward(D+1, k, lookh) } } } // D too large. combine a forward and backward partial lcs // first, a forward one kmax := -e.limit - 1 diagmax := -1 for k := -e.limit; k <= e.limit; k += 2 { x := e.getForward(e.limit, k) y := x - k if x+y > diagmax && x <= e.ux && y <= e.uy { diagmax, kmax = x+y, k } } if kmax < -e.limit { panic(fmt.Sprintf("no forward paths when limit=%d?", e.limit)) } lcs := e.forwardlcs(e.limit, kmax) // now a backward one // find the D path with minimal x+y inside the rectangle and // use that to compute the lcs diagmin := 1 << 25 // infinity for k := -e.limit; k <= e.limit; k += 2 { x := e.getBackward(e.limit, k) y := x - (k + e.delta) if x+y < diagmin && x >= 0 && y >= 0 { diagmin, kmax = x+y, k } } if kmax < -e.limit { panic(fmt.Sprintf("no backward paths when limit=%d?", e.limit)) } lcs = append(lcs, e.backwardlcs(e.limit, kmax)...) // These may overlap (e.forwardlcs and e.backwardlcs return sorted lcs) ans := lcs.fix() return ans } // Does Myers' Lemma apply? func (e *editGraph) twoDone(df, db int) (int, bool) { if (df+db+e.delta)%2 != 0 { return 0, false // diagonals cannot overlap } kmin := -db + e.delta if -df > kmin { kmin = -df } kmax := db + e.delta if df < kmax { kmax = df } for k := kmin; k <= kmax; k += 2 { x := e.vf.get(df, k) u := e.vb.get(db, k-e.delta) if u <= x { // is it worth looking at all the other k? for l := k; l <= kmax; l += 2 { x := e.vf.get(df, l) y := x - l u := e.vb.get(db, l-e.delta) v := u - l if x == u || u == 0 || v == 0 || y == e.uy || x == e.ux { return l, true } } return k, true } } return 0, false } func (e *editGraph) twolcs(df, db, kf int) lcs { // db==df || db+1==df x := e.vf.get(df, kf) y := x - kf kb := kf - e.delta u := e.vb.get(db, kb) v := u - kf // Myers proved there is a df-path from (0,0) to (u,v) // and a db-path from (x,y) to (N,M). // In the first case the overall path is the forward path // to (u,v) followed by the backward path to (N,M). // In the second case the path is the backward path to (x,y) // followed by the forward path to (x,y) from (0,0). // Look for some special cases to avoid computing either of these paths. if x == u { // "babaab" "cccaba" // already patched together lcs := e.forwardlcs(df, kf) lcs = append(lcs, e.backwardlcs(db, kb)...) return lcs.sort() } // is (u-1,v) or (u,v-1) labelled df-1? // if so, that forward df-1-path plus a horizontal or vertical edge // is the df-path to (u,v), then plus the db-path to (N,M) if u > 0 && ok(df-1, u-1-v) && e.vf.get(df-1, u-1-v) == u-1 { // "aabbab" "cbcabc" lcs := e.forwardlcs(df-1, u-1-v) lcs = append(lcs, e.backwardlcs(db, kb)...) return lcs.sort() } if v > 0 && ok(df-1, (u-(v-1))) && e.vf.get(df-1, u-(v-1)) == u { // "abaabb" "bcacab" lcs := e.forwardlcs(df-1, u-(v-1)) lcs = append(lcs, e.backwardlcs(db, kb)...) return lcs.sort() } // The path can't possibly contribute to the lcs because it // is all horizontal or vertical edges if u == 0 || v == 0 || x == e.ux || y == e.uy { // "abaabb" "abaaaa" if u == 0 || v == 0 { return e.backwardlcs(db, kb) } return e.forwardlcs(df, kf) } // is (x+1,y) or (x,y+1) labelled db-1? if x+1 <= e.ux && ok(db-1, x+1-y-e.delta) && e.vb.get(db-1, x+1-y-e.delta) == x+1 { // "bababb" "baaabb" lcs := e.backwardlcs(db-1, kb+1) lcs = append(lcs, e.forwardlcs(df, kf)...) return lcs.sort() } if y+1 <= e.uy && ok(db-1, x-(y+1)-e.delta) && e.vb.get(db-1, x-(y+1)-e.delta) == x { // "abbbaa" "cabacc" lcs := e.backwardlcs(db-1, kb-1) lcs = append(lcs, e.forwardlcs(df, kf)...) return lcs.sort() } // need to compute another path // "aabbaa" "aacaba" lcs := e.backwardlcs(db, kb) oldx, oldy := e.ux, e.uy e.ux = u e.uy = v lcs = append(lcs, e.forward()...) e.ux, e.uy = oldx, oldy return lcs.sort() }