// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa // checkFunc checks invariants of f. func checkFunc(f *Func) { blockMark := make([]bool, f.NumBlocks()) valueMark := make([]bool, f.NumValues()) for _, b := range f.Blocks { if blockMark[b.ID] { f.Fatalf("block %s appears twice in %s!", b, f.Name) } blockMark[b.ID] = true if b.Func != f { f.Fatalf("%s.Func=%s, want %s", b, b.Func.Name, f.Name) } for i, c := range b.Succs { for j, d := range b.Succs { if i != j && c == d { f.Fatalf("%s.Succs has duplicate block %s", b, c) } } } // Note: duplicate successors are hard in the following case: // if(...) goto x else goto x // x: v = phi(a, b) // If the conditional is true, does v get the value of a or b? // We could solve this other ways, but the easiest is just to // require (by possibly adding empty control-flow blocks) that // all successors are distinct. They will need to be distinct // anyway for register allocation (duplicate successors implies // the existence of critical edges). for _, p := range b.Preds { var found bool for _, c := range p.Succs { if c == b { found = true break } } if !found { f.Fatalf("block %s is not a succ of its pred block %s", b, p) } } switch b.Kind { case BlockExit: if len(b.Succs) != 0 { f.Fatalf("exit block %s has successors", b) } if b.Control == nil { f.Fatalf("exit block %s has no control value", b) } if !b.Control.Type.IsMemory() { f.Fatalf("exit block %s has non-memory control value %s", b, b.Control.LongString()) } case BlockRet: if len(b.Succs) != 1 { f.Fatalf("ret block %s len(Succs)==%d, want 1", b, len(b.Succs)) } if b.Control != nil { f.Fatalf("ret block %s has non-nil control %s", b, b.Control.LongString()) } if b.Succs[0].Kind != BlockExit { f.Fatalf("ret block %s has successor %s, not Exit", b, b.Succs[0].Kind) } case BlockDead: if len(b.Succs) != 0 { f.Fatalf("dead block %s has successors", b) } if len(b.Preds) != 0 { f.Fatalf("dead block %s has predecessors", b) } if len(b.Values) != 0 { f.Fatalf("dead block %s has values", b) } if b.Control != nil { f.Fatalf("dead block %s has a control value", b) } case BlockPlain: if len(b.Succs) != 1 { f.Fatalf("plain block %s len(Succs)==%d, want 1", b, len(b.Succs)) } if b.Control != nil { f.Fatalf("plain block %s has non-nil control %s", b, b.Control.LongString()) } case BlockIf: if len(b.Succs) != 2 { f.Fatalf("if block %s len(Succs)==%d, want 2", b, len(b.Succs)) } if b.Control == nil { f.Fatalf("if block %s has no control value", b) } if !b.Control.Type.IsBoolean() { f.Fatalf("if block %s has non-bool control value %s", b, b.Control.LongString()) } case BlockCall: if len(b.Succs) != 2 { f.Fatalf("call block %s len(Succs)==%d, want 2", b, len(b.Succs)) } if b.Control == nil { f.Fatalf("call block %s has no control value", b) } if !b.Control.Type.IsMemory() { f.Fatalf("call block %s has non-memory control value %s", b, b.Control.LongString()) } case BlockFirst: if len(b.Succs) != 2 { f.Fatalf("plain/dead block %s len(Succs)==%d, want 2", b, len(b.Succs)) } if b.Control != nil { f.Fatalf("plain/dead block %s has a control value", b) } } if len(b.Succs) > 2 && b.Likely != BranchUnknown { f.Fatalf("likeliness prediction %d for block %s with %d successors: %s", b.Likely, b, len(b.Succs)) } for _, v := range b.Values { switch v.Aux.(type) { case bool, float32, float64: f.Fatalf("value %v has an Aux value of type %T, should be AuxInt", v.LongString(), v.Aux) } for _, arg := range v.Args { if arg == nil { f.Fatalf("value %v has nil arg", v.LongString()) } } if valueMark[v.ID] { f.Fatalf("value %s appears twice!", v.LongString()) } valueMark[v.ID] = true if v.Block != b { f.Fatalf("%s.block != %s", v, b) } if v.Op == OpPhi && len(v.Args) != len(b.Preds) { f.Fatalf("phi length %s does not match pred length %d for block %s", v.LongString(), len(b.Preds), b) } if v.Op == OpAddr { if len(v.Args) == 0 { f.Fatalf("no args for OpAddr %s", v.LongString()) } if v.Args[0].Op != OpSP && v.Args[0].Op != OpSB { f.Fatalf("bad arg to OpAddr %v", v) } } // TODO: check for cycles in values // TODO: check type } } // Check to make sure all Blocks referenced are in the function. if !blockMark[f.Entry.ID] { f.Fatalf("entry block %v is missing", f.Entry) } for _, b := range f.Blocks { for _, c := range b.Preds { if !blockMark[c.ID] { f.Fatalf("predecessor block %v for %v is missing", c, b) } } for _, c := range b.Succs { if !blockMark[c.ID] { f.Fatalf("successor block %v for %v is missing", c, b) } } } if len(f.Entry.Preds) > 0 { f.Fatalf("entry block %s of %s has predecessor(s) %v", f.Entry, f.Name, f.Entry.Preds) } // Check to make sure all Values referenced are in the function. for _, b := range f.Blocks { for _, v := range b.Values { for i, a := range v.Args { if !valueMark[a.ID] { f.Fatalf("%v, arg %d of %v, is missing", a, i, v) } } } if b.Control != nil && !valueMark[b.Control.ID] { f.Fatalf("control value for %s is missing: %v", b, b.Control) } } for _, id := range f.bid.free { if blockMark[id] { f.Fatalf("used block b%d in free list", id) } } for _, id := range f.vid.free { if valueMark[id] { f.Fatalf("used value v%d in free list", id) } } // Check to make sure all args dominate uses. if f.RegAlloc == nil { // Note: regalloc introduces non-dominating args. // See TODO in regalloc.go. idom := dominators(f) for _, b := range f.Blocks { for _, v := range b.Values { for i, arg := range v.Args { x := arg.Block y := b if v.Op == OpPhi { y = b.Preds[i] } if !domCheck(f, idom, x, y) { f.Fatalf("arg %d of value %s does not dominate", i, v.LongString()) } } } if b.Control != nil && !domCheck(f, idom, b.Control.Block, b) { f.Fatalf("control value %s for %s doesn't dominate", b.Control, b) } } } } // domCheck reports whether x dominates y (including x==y). func domCheck(f *Func, idom []*Block, x, y *Block) bool { if y != f.Entry && idom[y.ID] == nil { // unreachable - ignore return true } for { if x == y { return true } y = idom[y.ID] if y == nil { return false } } }