The common code is converted, epoll and kqueue are converted.
Windows and solaris are still C.
LGTM=rsc
R=golang-codereviews, rsc, dave
CC=golang-codereviews, iant, khr, rsc
https://golang.org/cl/132910043
To date, the C compilers and Go compilers differed only in how
values were returned from functions. This made it difficult to call
Go from C or C from Go if return values were involved. It also made
assembly called from Go and assembly called from C different.
This CL changes the C compiler to use the Go conventions, passing
results on the stack, after the arguments.
[Exception: this does not apply to C ... functions, because you can't
know where on the stack the arguments end.]
By doing this, the CL makes it possible to rewrite C functions into Go
one at a time, without worrying about which languages call that
function or which languages it calls.
This CL also updates all the assembly files in package runtime to use
the new conventions. Argument references of the form 40(SP) have
been rewritten to the form name+10(FP) instead, and there are now
Go func prototypes for every assembly function called from C or Go.
This means that 'go vet runtime' checks effectively every assembly
function, and go vet's output was used to automate the bulk of the
conversion.
Some functions, like seek and nsec on Plan 9, needed to be rewritten.
Many assembly routines called from C were reading arguments
incorrectly, using MOVL instead of MOVQ or vice versa, especially on
the less used systems like openbsd.
These were found by go vet and have been corrected too.
If we're lucky, this may reduce flakiness on those systems.
Tested on:
darwin/386
darwin/amd64
linux/arm
linux/386
linux/amd64
If this breaks another system, the bug is almost certainly in the
sys_$GOOS_$GOARCH.s file, since the rest of the CL is tested
by the combination of the above systems.
LGTM=dvyukov, iant
R=golang-codereviews, 0intro, dave, alex.brainman, dvyukov, iant
CC=golang-codereviews, josharian, r
https://golang.org/cl/135830043
The runtime has historically held two dedicated values g (current goroutine)
and m (current thread) in 'extern register' slots (TLS on x86, real registers
backed by TLS on ARM).
This CL removes the extern register m; code now uses g->m.
On ARM, this frees up the register that formerly held m (R9).
This is important for NaCl, because NaCl ARM code cannot use R9 at all.
The Go 1 macrobenchmarks (those with per-op times >= 10 µs) are unaffected:
BenchmarkBinaryTree17 5491374955 5471024381 -0.37%
BenchmarkFannkuch11 4357101311 4275174828 -1.88%
BenchmarkGobDecode 11029957 11364184 +3.03%
BenchmarkGobEncode 6852205 6784822 -0.98%
BenchmarkGzip 650795967 650152275 -0.10%
BenchmarkGunzip 140962363 141041670 +0.06%
BenchmarkHTTPClientServer 71581 73081 +2.10%
BenchmarkJSONEncode 31928079 31913356 -0.05%
BenchmarkJSONDecode 117470065 113689916 -3.22%
BenchmarkMandelbrot200 6008923 5998712 -0.17%
BenchmarkGoParse 6310917 6327487 +0.26%
BenchmarkRegexpMatchMedium_1K 114568 114763 +0.17%
BenchmarkRegexpMatchHard_1K 168977 169244 +0.16%
BenchmarkRevcomp 935294971 914060918 -2.27%
BenchmarkTemplate 145917123 148186096 +1.55%
Minux previous reported larger variations, but these were caused by
run-to-run noise, not repeatable slowdowns.
Actual code changes by Minux.
I only did the docs and the benchmarking.
LGTM=dvyukov, iant, minux
R=minux, josharian, iant, dave, bradfitz, dvyukov
CC=golang-codereviews
https://golang.org/cl/109050043
This CL is an aggregate of 10271047, 10499043, 9733044. Descriptions of each follow:
10499043
runtime,cmd/ld: Merge TLS symbols and teach 5l about ARM TLS
This CL prepares for external linking support to ARM.
The pseudo-symbols runtime.g and runtime.m are merged into a single
runtime.tlsgm symbol. When external linking, the offset of a thread local
variable is stored at a memory location instead of being embedded into a offset
of a ldr instruction. With a single runtime.tlsgm symbol for both g and m, only
one such offset is needed.
The larger part of this CL moves TLS code from gcc compiled to internally
compiled. The TLS code now uses the modern MRC instruction, and 5l is taught
about TLS fallbacks in case the instruction is not available or appropriate.
10271047
This CL adds support for -linkmode external to 5l.
For 5l itself, use addrel to allow for D_CALL relocations to be handled by the
host linker. Of the cases listed in rsc's comment in issue 4069, only case 5 and
63 needed an update. One of the TODO: addrel cases was since replaced, and the
rest of the cases are either covered by indirection through addpool (cases with
LTO or LFROM flags) or stubs (case 74). The addpool cases are covered because
addpool emits AWORD instructions, which in turn are handled by case 11.
In the runtime, change the argv argument in the rt0* functions slightly to be a
pointer to the argv list, instead of relying on a particular location of argv.
9733044
The -shared flag to 6l outputs a shared library, implemented in Go
and callable from non-Go programs such as C.
The main part of this CL change the thread local storage model.
Go uses the fastest and least general mode, local exec. TLS data in shared
libraries normally requires at least the local dynamic mode, however, this CL
instead opts for using the initial exec mode. Initial exec mode is faster than
local dynamic mode and can be used in linux since the linker has reserved a
limited amount of TLS space for performance sensitive TLS code.
Initial exec mode requires an extra load from the GOT table to determine the
TLS offset. This penalty will not be paid if ld is not in -shared mode, since
TLS accesses will be reduced to local exec.
The elf sections .init_array and .rela.init_array are added to register the Go
runtime entry with cgo at library load time.
The "hidden" attribute is added to Cgo functions called from Go, since Go
does not generate call through the GOT table, and adding non-GOT relocations for
a global function is not supported by gcc. Cgo symbols don't need to be global
and avoiding the GOT table is also faster.
The changes to 8l are only removes code relevant to the old -shared mode where
internal linking was used.
This CL only address the low level linker work. It can be submitted by itself,
but to be useful, the runtime changes in CL 9738047 is also needed.
Design discussion at
https://groups.google.com/forum/?fromgroups#!topic/golang-nuts/zmjXkGrEx6QFixes#5590.
R=rsc
CC=golang-dev
https://golang.org/cl/12871044
Remove NOPROF/DUPOK from everything.
Edits done with a script, except pclinetest.asm which depended
on the DUPOK flag on main().
R=golang-dev, bradfitz
CC=golang-dev
https://golang.org/cl/12613044
This provides a way to generate core dumps when people need them.
The settings are:
GOTRACEBACK=0 no traceback on panic, just exit
GOTRACEBACK=1 default - traceback on panic, then exit
GOTRACEBACK=2 traceback including runtime frames on panic, then exit
GOTRACEBACK=crash traceback including runtime frames on panic, then crash
Fixes#3257.
R=golang-dev, devon.odell, r, daniel.morsing, ality
CC=golang-dev
https://golang.org/cl/7666044
The naming in this package is a disaster.
Make it all consistent.
Remove some 'static' from functions that will
be referred to from other files soon.
This CL is purely renames using global search and replace.
Submitting separately so that real changes will not
be drowned out by these renames in future CLs.
TBR=iant
CC=golang-dev
https://golang.org/cl/7416046
When we release memory to the OS, if the OS doesn't want us
to release it (for example, because the program executed
mlockall(MCL_FUTURE)), madvise will fail. Ignore the failure
instead of crashing.
Fixes#3435.
R=ken2
CC=golang-dev
https://golang.org/cl/6998052
Signal handlers are global resources but many language
environments (Go, C++ at Google, etc) assume they have sole
ownership of a particular handler. Signal handlers in
mixed-language applications must therefore be robust against
unexpected delivery of certain signals, such as SIGPROF.
The default Go signal handler runtime·sigtramp assumes that it
will never be called on a non-Go thread, but this assumption
is violated by when linking in C++ code that spawns threads.
Specifically, the handler asserts the thread has an associated
"m" (Go scheduler).
This CL is a very simple workaround: discard SIGPROF delivered to non-Go threads. runtime.badsignal(int32) now receives the signal number; if it returns without panicking (e.g. sig==SIGPROF) the signal is discarded.
I don't think there is any really satisfactory solution to the
problem of signal-based profiling in a mixed-language
application. It's not only the issue of handler clobbering,
but also that a C++ SIGPROF handler called in a Go thread
can't unwind the Go stack (and vice versa). The best we can
hope for is not crashing.
Note:
- I've ported this to all POSIX platforms, except ARM-linux which already ignores unexpected signals on m-less threads.
- I've avoided tail-calling runtime.badsignal because AFAICT the 6a/6l don't support it.
- I've avoided hoisting 'push sig' (common to both function calls) because it makes the code harder to read.
- Fixed an (apparently incorrect?) docstring.
R=iant, rsc, minux.ma
CC=golang-dev
https://golang.org/cl/6498057
When a very low-level system call that should never fail
does fail, we call notok, which crashes the program.
Often, we are then left with only the program counter as
information about the crash, and it is in notok.
Instead, inline calls to notok (it is just one instruction
on most systems) so that the program counter will
tell us which system call is unhappy.
R=golang-dev, gri, minux.ma, bradfitz
CC=golang-dev
https://golang.org/cl/5792048
Restore package os/signal, with new API:
Notify replaces Incoming, allowing clients
to ask for certain signals only. Also, signals
go to everyone who asks, not just one client.
This could plausibly move into package os now
that there are no magic side effects as a result
of the import.
Update runtime for new API: move common Unix
signal handling code into signal_unix.c.
(It's so easy to do this now that we don't have
to edit Makefiles!)
Tested on darwin,linux 386,amd64.
Fixes#1266.
R=r, dsymonds, bradfitz, iant, borman
CC=golang-dev
https://golang.org/cl/3749041
pkg/runtime/sys_darwin_amd64.s: fixes syscall select nr
pkg/runtime/sys_linux_arm.s: uses newselect instead of the now unimplemented
(old) select, also fixes the wrong div/mod statements in runtime.usleep.
Fixes#2633
R=golang-dev, dave, rsc
CC=golang-dev
https://golang.org/cl/5504096
This is like the ill-fated CL 5493063 except that
I have written a shell script (autogen.sh) instead of
thinking I could possibly write a correct Makefile.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/5496075
That was the last build that was close to working.
I will try that change again next week.
Make is being very subtle today.
At the reverted-to CL, the ARM traceback appears
to be broken. I'll look into that next week too.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/5492063
Collapse the arch,os-specific directories into the main directory
by renaming xxx/foo.c to foo_xxx.c, and so on.
There are no substantial edits here, except to the Makefile.
The assumption is that the Go tool will #define GOOS_darwin
and GOARCH_amd64 and will make any file named something
like signals_darwin.h available as signals_GOOS.h during the
build. This replaces what used to be done with -I$(GOOS).
There is still work to be done to make runtime build with
standard tools, but this is a big step. After this we will have
to write a script to generate all the generated files so they
can be checked in (instead of generated during the build).
R=r, iant, r, lucio.dere
CC=golang-dev
https://golang.org/cl/5490053