This change uses the new offAddr type in more parts of the runtime where
we've been implicitly switching from the default address space to a
contiguous view. The purpose of offAddr is to represent addresses in the
contiguous view of the address space, and to make direct computations
between real addresses and offset addresses impossible. This change thus
improves readability in the runtime.
Updates #35788.
Change-Id: I4e1c5fed3ed68aa12f49a42b82eb3f46aba82fc1
Reviewed-on: https://go-review.googlesource.com/c/go/+/230718
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
Currently addrRange and addrRanges operate on real addresses. That is,
the addresses they manipulate don't include arenaBaseOffset. When added
to an address, arenaBaseOffset makes the address space appear contiguous
on platforms where the address space is segmented. While this is
generally OK because even those platforms which have a segmented address
space usually don't give addresses in a different segment, today it
causes a mismatch between the scavenger and the rest of the page
allocator. The scavenger scavenges from the highest addresses first, but
only via real address, whereas the page allocator allocates memory in
offset address order.
So this change makes addrRange and addrRanges, i.e. what the scavenger
operates on, use offset addresses. However, lots of the page allocator
relies on an addrRange containing real addresses.
To make this transition less error-prone, this change introduces a new
type, offAddr, whose purpose is to make offset addresses a distinct
type, so any attempt to trivially mix real and offset addresses will
trigger a compilation error.
This change doesn't attempt to use offAddr in all of the runtime; a
follow-up change will look for and catch remaining uses of an offset
address which doesn't use the type.
Updates #35788.
Change-Id: I991d891ac8ace8339ca180daafdf6b261a4d43d1
Reviewed-on: https://go-review.googlesource.com/c/go/+/230717
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This change removes the concept of s.scavAddr in favor of explicitly
reserving and unreserving address ranges. s.scavAddr has several
problems with raciness that can cause the scavenger to miss updates, or
move it back unnecessarily, forcing future scavenge calls to iterate
over searched address space unnecessarily.
This change achieves this by replacing scavAddr with a second addrRanges
which is cloned from s.inUse at the end of each sweep phase. Ranges from
this second addrRanges are then reserved by scavengers (with the
reservation size proportional to the heap size) who are then able to
safely iterate over those ranges without worry of another scavenger
coming in.
Fixes#35788.
Change-Id: Ief01ae170384174875118742f6c26b2a41cbb66d
Reviewed-on: https://go-review.googlesource.com/c/go/+/208378
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Reviewed-by: Austin Clements <austin@google.com>
This change makes it so that we check whether scavAddr is actually
mapped before trying to look at the summary for the fast path, since we
may segfault if that that part of the summary is not mapped in.
Previously this wasn't a problem because we would conservatively map
all memory for the summaries between the lowest mapped heap address and
the highest one.
This change also adds a test for this case.
Change-Id: I2b1d89b5e044dce81745964dfaba829f4becdc57
Reviewed-on: https://go-review.googlesource.com/c/go/+/212637
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
When growing the address ranges, the new length is the old length + 1.
Fixes#36113.
Change-Id: I1b425f78e473cfa3cbdfe6113e166663f41fc9f3
Reviewed-on: https://go-review.googlesource.com/c/go/+/211157
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Michael Knyszek <mknyszek@google.com>
Prior to this change, if the heap was very discontiguous (such as in
TestArenaCollision) it's possible we could map a large amount of memory
as R/W and commit it. We would use only the start and end to track what
should be mapped, and we would extend that mapping as needed to
accomodate a potentially fragmented address space.
After this change, we only map exactly the part of the summary arrays
that we need by using the inUse ranges from the previous change. This
reduces the GCSys footprint of TestArenaCollision from 300 MiB to 18
MiB.
Because summaries are no longer mapped contiguously, this means the
scavenger can no longer iterate directly. This change also updates the
scavenger to borrow ranges out of inUse and iterate over only the
parts of the heap which are actually currently in use. This is both an
optimization and necessary for correctness.
Fixes#35514.
Change-Id: I96bf0c73ed0d2d89a00202ece7b9d089a53bac90
Reviewed-on: https://go-review.googlesource.com/c/go/+/207758
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This change adds a new inUse field to the allocator which tracks ranges
of addresses that are owned by the heap. It is updated on each heap
growth.
These ranges are tracked in an array which is kept sorted. In practice
this array shouldn't exceed its initial allocation except in rare cases
and thus should be small (ideally exactly 1 element in size).
In a hypothetical worst-case scenario wherein we have a 1 TiB heap and 4
MiB arenas (note that the address ranges will never be at a smaller
granularity than an arena, since arenas are always allocated
contiguously), inUse would use at most 4 MiB of memory if the heap
mappings were completely discontiguous (highly unlikely) with an
additional 2 MiB leaked from previous allocations. Furthermore, the
copies that are done to keep the inUse array sorted will copy at most 4
MiB of memory in such a scenario, which, assuming a conservative copying
rate of 5 GiB/s, amounts to about 800µs.
However, note that in practice:
1) Most 64-bit platforms have 64 MiB arenas.
2) The copies should incur little-to-no page faults, meaning a copy rate
closer to 25-50 GiB/s is expected.
3) Go heaps are almost always mostly contiguous.
Updates #35514.
Change-Id: I3ad07f1c2b5b9340acf59ecc3b9ae09e884814fe
Reviewed-on: https://go-review.googlesource.com/c/go/+/207757
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Reviewed-by: Austin Clements <austin@google.com>