Prior to this change, we generated additional rules at rulegen time
for all possible combinations of args to commutative ops.
This is simple and works well, but leads to lots of generated rules.
This in turn has increased the size of the compiler,
made it hard to compile package ssa on small machines,
and provided a disincentive to mark some ops as commutative.
This change reworks how we handle commutative ops.
Instead of generating a rule per argument permutation,
we generate a series of nested loops, one for each commutative op.
Each loop tries both possible argument orderings.
I also considered attempting to canonicalize the inputs to the
rewrite rules. However, because either or both arguments might be
nothing more than an identifier, and because there can be arbitrary
conditions to evaluate during matching, I did not see how to proceed.
The duplicate rule detection now sorts arguments to commutative ops,
so that it can detect commutative-only duplicates.
There may be further optimizations to the new generated code.
In particular, we may not be removing as many bounds checks as before;
I have not investigated deeply. If more work here is needed,
we could do it with more hints or with improvements to the prove pass.
This change has almost no impact on the generated code.
It does not pass toolstash-check, however. In a handful of functions,
for reasons I do not understand, there are minor position changes.
For the entire series ending at this change,
there is negligible compiler performance impact.
The compiler binary shrinks by about 15%,
and package ssa shrinks by about 25%.
Package ssa also compiles ~25% faster with ~25% less memory.
Change-Id: Ia2ee9ceae7be08a17342319d4e31b0bb238a2ee4
Reviewed-on: https://go-review.googlesource.com/c/go/+/213703
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
CL 203284 added a compiler intrinsics from atomic Load8 and Store8 on
several architectures, but missed the lowering on MIPS. This CL fixes
that.
Updates #10958, #24543.
Change-Id: I82e88971554fe8c33ad2bf195a633c44b9ac4cf7
Reviewed-on: https://go-review.googlesource.com/c/go/+/203977
Run-TryBot: Austin Clements <austin@google.com>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
First, renove unnecessary "// cond:" lines from the generated files.
This shaves off about ~7k lines.
Second, join "if cond { break }" statements via "||", which allows us to
deduplicate a large number of them. This shaves off another ~25k lines.
This change is not for readability or simplicity; but rather, to avoid
unnecessary verbosity that makes the generated files larger. All in all,
git reports that the generated files overall weigh ~200KiB less, or
about 2.7% less.
While at it, add a -trace flag to rulegen.
Updates #33644.
Change-Id: I3fac0290a6066070cc62400bf970a4ae0929470a
Reviewed-on: https://go-review.googlesource.com/c/go/+/196498
Run-TryBot: Daniel Martí <mvdan@mvdan.cc>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
First, add cpu and memory profiling flags, as these are useful to see
where rulegen is spending its time. It now takes many seconds to run on
a recent laptop, so we have to keep an eye on what it's doing.
Second, stop writing '_ = var' lines to keep imports and variables used
at all times. Now that rulegen removes all such unused names, they're
unnecessary.
To perform the removal, lean on go/types to first detect what names are
unused. We can configure it to give us all the type-checking errors in a
file, so we can collect all "declared but not used" errors in a single
pass.
We then use astutil.Apply to remove the relevant nodes based on the line
information from each unused error. This allows us to apply the changes
without having to do extra parser+printer roundtrips to plaintext, which
are far too expensive.
We need to do multiple such passes, as removing an unused variable
declaration might then make another declaration unused. Two passes are
enough to clean every file at the moment, so add a limit of three passes
for now to avoid eating cpu uncontrollably by accident.
The resulting performance of the changes above is a ~30% loss across the
table, since go/types is fairly expensive. The numbers were obtained
with 'benchcmd Rulegen go run *.go', which involves compiling rulegen
itself, but that seems reflective of how the program is used.
name old time/op new time/op delta
Rulegen 5.61s ± 0% 7.36s ± 0% +31.17% (p=0.016 n=5+4)
name old user-time/op new user-time/op delta
Rulegen 7.20s ± 1% 9.92s ± 1% +37.76% (p=0.016 n=5+4)
name old sys-time/op new sys-time/op delta
Rulegen 135ms ±19% 169ms ±17% +25.66% (p=0.032 n=5+5)
name old peak-RSS-bytes new peak-RSS-bytes delta
Rulegen 71.0MB ± 2% 85.6MB ± 2% +20.56% (p=0.008 n=5+5)
We can live with a bit more resource usage, but the time/op getting
close to 10s isn't good. To win that back, introduce concurrency in
main.go. This further increases resource usage a bit, but the real time
on this quad-core laptop is greatly reduced. The final benchstat is as
follows:
name old time/op new time/op delta
Rulegen 5.61s ± 0% 3.97s ± 1% -29.26% (p=0.008 n=5+5)
name old user-time/op new user-time/op delta
Rulegen 7.20s ± 1% 13.91s ± 1% +93.09% (p=0.008 n=5+5)
name old sys-time/op new sys-time/op delta
Rulegen 135ms ±19% 269ms ± 9% +99.17% (p=0.008 n=5+5)
name old peak-RSS-bytes new peak-RSS-bytes delta
Rulegen 71.0MB ± 2% 226.3MB ± 1% +218.72% (p=0.008 n=5+5)
It might be possible to reduce the cpu or memory usage in the future,
such as configuring go/types to do less work, or taking shortcuts to
avoid having to run it many times. For now, ~2x cpu and ~4x memory usage
seems like a fair trade for a faster and better rulegen.
Finally, we can remove the old code that tried to remove some unused
variables in a hacky and unmaintainable way.
Change-Id: Iff9e83e3f253babf5a1bd48cc993033b8550cee6
Reviewed-on: https://go-review.googlesource.com/c/go/+/189798
Run-TryBot: Daniel Martí <mvdan@mvdan.cc>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
"Division by invariant integers using multiplication" paper
by Granlund and Montgomery contains a method for directly computing
divisibility (x%c == 0 for c constant) by means of the modular inverse.
The method is further elaborated in "Hacker's Delight" by Warren Section 10-17
This general rule can compute divisibilty by one multiplication and a compare
for odd divisors and an additional rotate for even divisors.
To apply the divisibility rule, we must take into account
the rules to rewrite x%c = x-((x/c)*c) and (x/c) for c constant on the first
optimization pass "opt". This complicates the matching as we want to match
only in the cases where the result of (x/c) is not also available.
So, we must match on the expanded form of (x/c) in the expression x == c*(x/c)
in the "late opt" pass after common subexpresion elimination.
Note, that if there is an intermediate opt pass introduced in the future we
could simplify these rules by delaying the magic division rewrite to "late opt"
and matching directly on (x/c) in the intermediate opt pass.
Additional rules to lower the generic RotateLeft* ops were also applied.
On amd64, the divisibility check is 25-50% faster.
name old time/op new time/op delta
DivconstI64-4 2.08ns ± 0% 2.08ns ± 1% ~ (p=0.881 n=5+5)
DivisibleconstI64-4 2.67ns ± 0% 2.67ns ± 1% ~ (p=1.000 n=5+5)
DivisibleWDivconstI64-4 2.67ns ± 0% 2.67ns ± 0% ~ (p=0.683 n=5+5)
DivconstU64-4 2.08ns ± 1% 2.08ns ± 1% ~ (p=1.000 n=5+5)
DivisibleconstU64-4 2.77ns ± 1% 1.55ns ± 2% -43.90% (p=0.008 n=5+5)
DivisibleWDivconstU64-4 2.99ns ± 1% 2.99ns ± 1% ~ (p=1.000 n=5+5)
DivconstI32-4 1.53ns ± 2% 1.53ns ± 0% ~ (p=1.000 n=5+5)
DivisibleconstI32-4 2.23ns ± 0% 2.25ns ± 3% ~ (p=0.167 n=5+5)
DivisibleWDivconstI32-4 2.27ns ± 1% 2.27ns ± 1% ~ (p=0.429 n=5+5)
DivconstU32-4 1.78ns ± 0% 1.78ns ± 1% ~ (p=1.000 n=4+5)
DivisibleconstU32-4 2.52ns ± 2% 1.26ns ± 0% -49.96% (p=0.000 n=5+4)
DivisibleWDivconstU32-4 2.63ns ± 0% 2.85ns ±10% +8.29% (p=0.016 n=4+5)
DivconstI16-4 1.54ns ± 0% 1.54ns ± 0% ~ (p=0.333 n=4+5)
DivisibleconstI16-4 2.10ns ± 0% 2.10ns ± 1% ~ (p=0.571 n=4+5)
DivisibleWDivconstI16-4 2.22ns ± 0% 2.23ns ± 1% ~ (p=0.556 n=4+5)
DivconstU16-4 1.09ns ± 0% 1.01ns ± 1% -7.74% (p=0.000 n=4+5)
DivisibleconstU16-4 1.83ns ± 0% 1.26ns ± 0% -31.52% (p=0.008 n=5+5)
DivisibleWDivconstU16-4 1.88ns ± 0% 1.89ns ± 1% ~ (p=0.365 n=5+5)
DivconstI8-4 1.54ns ± 1% 1.54ns ± 1% ~ (p=1.000 n=5+5)
DivisibleconstI8-4 2.10ns ± 0% 2.11ns ± 0% ~ (p=0.238 n=5+4)
DivisibleWDivconstI8-4 2.22ns ± 0% 2.23ns ± 2% ~ (p=0.762 n=5+5)
DivconstU8-4 0.92ns ± 1% 0.94ns ± 1% +2.65% (p=0.008 n=5+5)
DivisibleconstU8-4 1.66ns ± 0% 1.26ns ± 1% -24.28% (p=0.008 n=5+5)
DivisibleWDivconstU8-4 1.79ns ± 0% 1.80ns ± 1% ~ (p=0.079 n=4+5)
A follow-up change will address the signed division case.
Updates #30282
Change-Id: I7e995f167179aa5c76bb10fbcbeb49c520943403
Reviewed-on: https://go-review.googlesource.com/c/go/+/168037
Run-TryBot: Brian Kessler <brian.m.kessler@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
A lot of the naked for loops begin like:
for {
v := b.Control
if v.Op != OpConstBool {
break
}
...
return true
}
Instead, write them out in a more compact and readable way:
for v.Op == OpConstBool {
...
return true
}
This requires the addition of two bytes.Buffer writers, as this helps us
make a decision based on future pieces of generated code. This probably
makes rulegen slightly slower, but that's not noticeable; the code
generation still takes ~3.5s on my laptop, excluding build time.
The "v := b.Control" declaration can be moved to the top of each
function. Even though the rules can modify b.Control when firing, they
also make the function return, so v can't be used again.
While at it, remove three unnecessary lines from the top of each
rewriteBlock func.
In total, this results in ~4k lines removed from the generated code, and
a slight improvement in readability.
Change-Id: I317e4c6a4842c64df506f4513375475fad2aeec5
Reviewed-on: https://go-review.googlesource.com/c/go/+/167399
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
A few examples (for accessing a slice of length 3):
s[-1] runtime error: index out of range [-1]
s[3] runtime error: index out of range [3] with length 3
s[-1:0] runtime error: slice bounds out of range [-1:]
s[3:0] runtime error: slice bounds out of range [3:0]
s[3:-1] runtime error: slice bounds out of range [:-1]
s[3:4] runtime error: slice bounds out of range [:4] with capacity 3
s[0:3:4] runtime error: slice bounds out of range [::4] with capacity 3
Note that in cases where there are multiple things wrong with the
indexes (e.g. s[3:-1]), we report one of those errors kind of
arbitrarily, currently the rightmost one.
An exhaustive set of examples is in issue30116[u].out in the CL.
The message text has the same prefix as the old message text. That
leads to slightly awkward phrasing but hopefully minimizes the chance
that code depending on the error text will break.
Increases the size of the go binary by 0.5% (amd64). The panic functions
take arguments in registers in order to keep the size of the compiled code
as small as possible.
Fixes#30116
Change-Id: Idb99a827b7888822ca34c240eca87b7e44a04fdd
Reviewed-on: https://go-review.googlesource.com/c/go/+/161477
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
This reduces the number of extra bounds check hints we need to
insert. For example, rather than producing:
_ = v.Args[2]
x := v.Args[0]
y := v.Args[1]
z := v.Args[2]
We now produce:
z := v.Args[2]
x := v.Args[0]
y := v.Args[1]
This gets rid of about 7000 lines of code from the rewrite rules.
Change-Id: I1291cf0f82e8d035a6d65bce7dee6cedee04cbcd
Reviewed-on: https://go-review.googlesource.com/c/go/+/167397
Reviewed-by: Daniel Martí <mvdan@mvdan.cc>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
The sheer length of the generated rules files makes my
editor and git client unhappy.
This change is a small step towards shortening them.
We recognize a few magic variables during rulegen: b, config, fe, typ.
Of these, only b appears prone to false positives.
By tightening the heuristic and fixing one case in MIPS.rules,
we can make the heuristic enough that it has no failures.
That allows us to remove the hedge assignments to _,
removing 3000 pointless lines of code.
Change-Id: I080cde5db28c8277cb3fd9ddcd829306c9a27785
Reviewed-on: https://go-review.googlesource.com/c/go/+/166979
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Normally this happens when combining a sign extension and a load. We
want the resulting combo-instruction to get the line number of the
load, not the line number of the sign extension.
For each rule, compute where we should get its line number by finding
a value on the match side that can fault. Use that line number for
all the new values created on the right-hand side.
Fixes#27201
Change-Id: I19b3c6f468fff1a3c0bfbce2d6581828557064a3
Reviewed-on: https://go-review.googlesource.com/c/156937
Reviewed-by: David Chase <drchase@google.com>
(SGTconst [c] (SRLconst _ [d])) && 0 <= int32(c) && uint32(d) <= 31 && 1<<(32-uint32(d)) <= int32(c) -> (MOVWconst [1])
This rule is problematic. 1<<(32-uint32(d)) <= int32(c) meant to
say that it is true if c is greater than the largest possible
value of the right shift. But when d==1, 1<<(32-1) is negative
and results in the wrong comparison.
Rewrite the rules in a more direct way.
Fixes#29402.
Change-Id: I5940fc9538d9bc3a4bcae8aa34672867540dc60e
Reviewed-on: https://go-review.googlesource.com/c/155798
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
During development and debugging, I often want to
write noteRule(fmt.Sprintf(...)), and end up
manually adding the import to the generated code.
Let's just make it always available instead.
Change-Id: I1e2d47c98ba056e1b5da42e35fb6ad26f1d9cc3d
Reviewed-on: https://go-review.googlesource.com/c/145207
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Martin Möhrmann <moehrmann@google.com>
Lack of a well-defined order between VarDef and related
address operations sometimes causes problems with store order
and write barrier transformations; glitches in the order are
made irreparable (by later optimizations) if the two parts of
the glitch straddle a split in the original block caused by
insertion of a write barrier diamond.
Fix this by creating a LocalAddr for addresses of locals
(what VarDef matters for) that takes a memory input to
help make the order explicit. Addr is modified to only
be legal for SB operand, so there is no overlap between
Addr and LocalAddr uses (there may be some downstream
cleanup from this).
Changes to generic.rules and rewrite.go ensure that codegen
tests continue to pass; CSE of LocalAddr is impaired, not
quite sure of the cost.
Fixes#26105.
Change-Id: Id4192b4440aa4e9d7ba54a465c456df9b530b515
Reviewed-on: https://go-review.googlesource.com/122483
Run-TryBot: David Chase <drchase@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
On amd64, Ctz must include special handling of zeros.
But the prove pass has enough information to detect whether the input
is non-zero, allowing a more efficient lowering.
Introduce new CtzNonZero ops to capture and use this information.
Benchmark code:
func BenchmarkVisitBits(b *testing.B) {
b.Run("8", func(b *testing.B) {
for i := 0; i < b.N; i++ {
x := uint8(0xff)
for x != 0 {
sink = bits.TrailingZeros8(x)
x &= x - 1
}
}
})
// and similarly so for 16, 32, 64
}
name old time/op new time/op delta
VisitBits/8-8 7.27ns ± 4% 5.58ns ± 4% -23.35% (p=0.000 n=28+26)
VisitBits/16-8 14.7ns ± 7% 10.5ns ± 4% -28.43% (p=0.000 n=30+28)
VisitBits/32-8 27.6ns ± 8% 19.3ns ± 3% -30.14% (p=0.000 n=30+26)
VisitBits/64-8 44.0ns ±11% 38.0ns ± 5% -13.48% (p=0.000 n=30+30)
Fixes#25077
Change-Id: Ie6e5bd86baf39ee8a4ca7cadcf56d934e047f957
Reviewed-on: https://go-review.googlesource.com/109358
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Currently, each architecture lowers OpConvert to an arch-specific
OpXXXconvert. This is silly because OpConvert means the same thing on
all architectures and is logically a no-op that exists only to keep
track of conversions to and from unsafe.Pointer. Furthermore, lowering
it makes it harder to recognize in other analyses, particularly
liveness analysis.
This CL eliminates the lowering of OpConvert, leaving it as the
generic op until code generation time.
The main complexity here is that we still need to register-allocate
OpConvert operations. Currently, each arch's lowered OpConvert
specifies all GP registers in its register mask. Ideally, OpConvert
wouldn't affect value homing at all, and we could just copy the home
of OpConvert's source, but this can potentially home an OpConvert in a
LocalSlot, which neither regalloc nor stackalloc expect. Rather than
try to disentangle this assumption from regalloc and stackalloc, we
continue to register-allocate OpConvert, but teach regalloc that
OpConvert can be allocated to any allocatable GP register.
For #24543.
Change-Id: I795a6aee5fd94d4444a7bafac3838a400c9f7bb6
Reviewed-on: https://go-review.googlesource.com/108496
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
In addition to look nicer to the eye, this allows to reformat
and indent rules without causing spurious changes to the generated
file, making it easier to spot functional changes.
After this CL, all CLs that will aggregate rules through
the new "|" functionality should cause no changes to the
generated files.
Change-Id: Icec283585ba8d7b91c79d76513c1d83dca4b30aa
Reviewed-on: https://go-review.googlesource.com/95216
Run-TryBot: Giovanni Bajo <rasky@develer.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Add a compiler intrinsic for getcallersp. So we are able to get
rid of the argument (not done in this CL).
Change-Id: Ic38fda1c694f918328659ab44654198fb116668d
Reviewed-on: https://go-review.googlesource.com/69350
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
Reviewed-by: David Chase <drchase@google.com>
Add support for generating TBZ/TBNZ instructions.
The bit-test-and-branch pattern shows up in a number of
important places, including the runtime (gc bitmaps).
Before this change, there were 3 TB[N]?Z instructions in the Go tool,
all of which were in hand-written assembly. After this change, there
are 285. Also, the go1 benchmark binary gets about 4.5kB smaller.
Fixes#21361
Change-Id: I170c138b852754b9b8df149966ca5e62e6dfa771
Reviewed-on: https://go-review.googlesource.com/54470
Run-TryBot: Philip Hofer <phofer@umich.edu>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Apply the fix in CL 44355 to MIPS.
ARM64 has these rules but commented out for performance reason.
Fix the commented rules, in case they are enabled in the future.
Enhance the test so it triggers the failure on ARM and MIPS without
the fix.
Updates #20530.
Change-Id: I82d77448e3939a545fe519d0a29a164f8fa5417c
Reviewed-on: https://go-review.googlesource.com/44430
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Noticed while looking at #20356.
Cuts 160k (1%) off of the cmd/compile binary.
Change-Id: If2397bc6971d6be9be6975048adecb0b5efa6d66
Reviewed-on: https://go-review.googlesource.com/43501
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Type.Size and Type.Alignment are for the front end:
They calculate size and alignment if needed.
Type.MustSize and Type.MustAlignment are for the back end:
They call Fatal if size and alignment are not already calculated.
Most uses are of MustSize and MustAlignment,
but that's because the back end is newer,
and this API was added to support it.
This CL was mostly generated with sed and selective reversion.
The only mildly interesting bit is the change of the ssa.Type interface
and the supporting ssa dummy types.
Follow-up to review feedback on CL 41970.
Passes toolstash-check.
Change-Id: I0d9b9505e57453dae8fb6a236a07a7a02abd459e
Reviewed-on: https://go-review.googlesource.com/42016
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
This makes the cmd/compile/internal/ssa package
compile much faster, and has no impact
on the speed of the compiler.
The chunk size was selected empirically,
in that at chunk size 10, the object
file was smaller than at chunk size 5 or 20.
name old time/op new time/op delta
SSA 7.33s ± 5% 5.64s ± 1% -23.10% (p=0.000 n=10+10)
name old user-time/op new user-time/op delta
SSA 9.70s ± 1% 8.04s ± 2% -17.17% (p=0.000 n=9+10)
name old obj-bytes new obj-bytes delta
SSA 9.82M ± 0% 8.28M ± 0% -15.67% (p=0.000 n=10+10)
Change-Id: Iab472905da3f0e82f3db2c93d06e2759abc9dd44
Reviewed-on: https://go-review.googlesource.com/41296
Reviewed-by: Keith Randall <khr@golang.org>
They are left over from the days before
we had BlockKindFirst and swapSuccessors.
Change-Id: I9259d53ac2821ca4d5de5dd520ca4b78f52ecad4
Reviewed-on: https://go-review.googlesource.com/41206
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Daniel Martí <mvdan@mvdan.cc>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Now only cmd/asm and cmd/compile depend on cmd/internal/obj. Changing
the assembler backends no longer requires reinstalling cmd/link or
cmd/addr2line.
There's also now one canonical definition of the object file format in
cmd/internal/objabi/doc.go, with a warning to update all three
implementations.
objabi is still something of a grab bag of unrelated code (e.g., flag
and environment variable handling probably belong in a separate "tool"
package), but this is still progress.
Fixes#15165.
Fixes#20026.
Change-Id: Ic4b92fac7d0d35438e0d20c9579aad4085c5534c
Reviewed-on: https://go-review.googlesource.com/40972
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
Note that this is a redo of an undo of the original buggy CL 38666.
We have lots of rewrite rules that vary only in the fact that
we have 2 versions for the 2 different orderings of various
commuting ops. For example:
(ADDL x (MOVLconst [c])) -> (ADDLconst [c] x)
(ADDL (MOVLconst [c]) x) -> (ADDLconst [c] x)
It can get unwieldly quickly, especially when there is more than
one commuting op in a rule.
Our existing "fix" for this problem is to have rules that
canonicalize the operations first. For example:
(Eq64 x (Const64 <t> [c])) && x.Op != OpConst64 -> (Eq64 (Const64 <t> [c]) x)
Subsequent rules can then assume if there is a constant arg to Eq64,
it will be the first one. This fix kinda works, but it is fragile and
only works when we remember to include the required extra rules.
The fundamental problem is that the rule matcher doesn't
know anything about commuting ops. This CL fixes that fact.
We already have information about which ops commute. (The register
allocator takes advantage of commutivity.) The rule generator now
automatically generates multiple rules for a single source rule when
there are commutative ops in the rule. We can now drop all of our
almost-duplicate source-level rules and the canonicalization rules.
I have some CLs in progress that will be a lot less verbose when
the rule generator handles commutivity for me.
I had to reorganize the load-combining rules a bit. The 8-way OR rules
generated 128 different reorderings, which was causing the generator
to put too much code in the rewrite*.go files (the big ones were going
from 25K lines to 132K lines). Instead I reorganized the rules to
combine pairs of loads at a time. The generated rule files are now
actually a bit (5%) smaller.
Make.bash times are ~unchanged.
Compiler benchmarks are not observably different. Probably because
we don't spend much compiler time in rule matching anyway.
I've also done a pass over all of our ops adding commutative markings
for ops which hadn't had them previously.
Fixes#18292
Change-Id: Ic1c0e43fbf579539f459971625f69690c9ab8805
Reviewed-on: https://go-review.googlesource.com/38801
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
By checking GOARM in ssa/gen/ARM.rules, each intermediate operator
can be implemented via different instruction serials.
It is up to the user to choose between compitability and efficiency.
The Bswap32(x) is optimized to REV(x) when GOARM >= 6.
The CTZ(x) is optimized to CLZ(RBIT x) when GOARM == 7.
Change-Id: Ie9ee645fa39333fa79ad84ed4d1cefac30422814
Reviewed-on: https://go-review.googlesource.com/35610
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
This reverts commit 041ecb697f.
Reason for revert: Not working on S390x and some 386 archs.
I have a guess why the S390x is failing. No clue on the 386 yet.
Revert until I can figure it out.
Change-Id: I64f1ce78fa6d1037ebe7ee2a8a8107cb4c1db70c
Reviewed-on: https://go-review.googlesource.com/38790
Reviewed-by: Keith Randall <khr@golang.org>
We have lots of rewrite rules that vary only in the fact that
we have 2 versions for the 2 different orderings of various
commuting ops. For example:
(ADDL x (MOVLconst [c])) -> (ADDLconst [c] x)
(ADDL (MOVLconst [c]) x) -> (ADDLconst [c] x)
It can get unwieldly quickly, especially when there is more than
one commuting op in a rule.
Our existing "fix" for this problem is to have rules that
canonicalize the operations first. For example:
(Eq64 x (Const64 <t> [c])) && x.Op != OpConst64 -> (Eq64 (Const64 <t> [c]) x)
Subsequent rules can then assume if there is a constant arg to Eq64,
it will be the first one. This fix kinda works, but it is fragile and
only works when we remember to include the required extra rules.
The fundamental problem is that the rule matcher doesn't
know anything about commuting ops. This CL fixes that fact.
We already have information about which ops commute. (The register
allocator takes advantage of commutivity.) The rule generator now
automatically generates multiple rules for a single source rule when
there are commutative ops in the rule. We can now drop all of our
almost-duplicate source-level rules and the canonicalization rules.
I have some CLs in progress that will be a lot less verbose when
the rule generator handles commutivity for me.
I had to reorganize the load-combining rules a bit. The 8-way OR rules
generated 128 different reorderings, which was causing the generator
to put too much code in the rewrite*.go files (the big ones were going
from 25K lines to 132K lines). Instead I reorganized the rules to
combine pairs of loads at a time. The generated rule files are now
actually a bit (5%) smaller.
[Note to reviewers: check these carefully. Most of the other rule
changes are trivial.]
Make.bash times are ~unchanged.
Compiler benchmarks are not observably different. Probably because
we don't spend much compiler time in rule matching anyway.
I've also done a pass over all of our ops adding commutative markings
for ops which hadn't had them previously.
Fixes#18292
Change-Id: I999b1307272e91965b66754576019dedcbe7527a
Reviewed-on: https://go-review.googlesource.com/38666
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Removing stray xori that came from big endian copy/paste.
Adding atomicand8 check to runtime.check() that would have revealed
this error.
Might fix#19396.
Change-Id: If8d6f25d3e205496163541eb112548aa66df9c2a
Reviewed-on: https://go-review.googlesource.com/38257
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
This reduces the number of calls back into the
gc Type routines, which will help performance
in a concurrent backend.
It also reduces the number of callsites
that must be considered in making the transition.
Passes toolstash-check -all. No compiler performance changes.
Updates #15756
Change-Id: Ic7a8f1daac7e01a21658ae61ac118b2a70804117
Reviewed-on: https://go-review.googlesource.com/38340
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Prior to this CL, the ssa.Frontend field was responsible
for providing types to the backend during compilation.
However, the types needed by the backend are few and static.
It makes more sense to use a struct for them
and to hang that struct off the ssa.Config,
which is the correct home for readonly data.
Now that Types is a struct, we can clean up the names a bit as well.
This has the added benefit of allowing early construction
of all types needed by the backend.
This will be useful for concurrent backend compilation.
Passes toolstash-check -all. No compiler performance change.
Updates #15756
Change-Id: I021658c8cf2836d6a22bbc20cc828ac38c7da08a
Reviewed-on: https://go-review.googlesource.com/38336
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Suggested by mdempsky in CL 38232.
This allows us to use the Frontend field
to associate frontend state and information
with a function.
See the following CL in the series for examples.
This is a giant CL, but it is almost entirely routine refactoring.
The ssa test API is starting to feel a bit unwieldy.
I will clean it up separately, once the dust has settled.
Passes toolstash -cmp.
Updates #15756
Change-Id: I71c573bd96ff7251935fce1391b06b1f133c3caf
Reviewed-on: https://go-review.googlesource.com/38327
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Prior to this CL, config was an explicit argument
to the SSA rewrite rules, and rules that needed
a Frontend got at it via config.
An upcoming CL moves Frontend from Config to Func,
so rules can no longer reach Frontend via Config.
Passing a Frontend as an argument to the rewrite rules
causes a 2-3% regression in compile times.
This CL takes a different approach:
It treats the variable names "config" and "fe"
as special and calculates them as needed.
The "as needed part" is also important to performance:
If they are calculated eagerly, the nilchecks themselves
cause a regression.
This introduces a little bit of magic into the rewrite
generator. However, from the perspective of the rules,
the config variable was already more or less magic.
And it makes the upcoming changes much clearer.
Passes toolstash -cmp.
Change-Id: I173f2bcc124cba43d53138bfa3775e21316a9107
Reviewed-on: https://go-review.googlesource.com/38326
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
name old time/op new time/op delta
LeadingZeros-4 2.00ns ± 0% 1.34ns ± 1% -33.02% (p=0.000 n=8+10)
LeadingZeros16-4 1.62ns ± 0% 1.57ns ± 0% -3.09% (p=0.001 n=8+9)
LeadingZeros32-4 2.14ns ± 0% 1.48ns ± 0% -30.84% (p=0.002 n=8+10)
LeadingZeros64-4 2.06ns ± 1% 1.33ns ± 0% -35.08% (p=0.000 n=8+8)
8-bit args is a special case - the Go code is really fast because
it is just a single table lookup. So I've disabled that for now.
Intrinsics were actually slower:
LeadingZeros8-4 1.22ns ± 3% 1.58ns ± 1% +29.56% (p=0.000 n=10+10)
Update #18616
Change-Id: Ia9c289b9ba59c583ea64060470315fd637e814cf
Reviewed-on: https://go-review.googlesource.com/38311
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
Remove size AuxInt in Store, and alignment in Move/Zero. We still
pass size AuxInt to Move/Zero, as it is used for partial Move/Zero
lowering (e.g. cmd/compile/internal/ssa/gen/386.rules:288).
SizeAndAlign is gone.
Passes "toolstash -cmp" on std.
Change-Id: I1ca34652b65dd30de886940e789fcf41d521475d
Reviewed-on: https://go-review.googlesource.com/38150
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Explcitly block fused multiply-add pattern matching when a cast is used
after the multiplication, for example:
- (a * b) + c // can emit fused multiply-add
- float64(a * b) + c // cannot emit fused multiply-add
float{32,64} and complex{64,128} casts of matching types are now kept
as OCONV operations rather than being replaced with OCONVNOP operations
because they now imply a rounding operation (and therefore aren't a
no-op anymore).
Operations (for example, multiplication) on complex types may utilize
fused multiply-add and -subtract instructions internally. There is no
way to disable this behavior at the moment.
Improves the performance of the floating point implementation of
poly1305:
name old speed new speed delta
64 246MB/s ± 0% 275MB/s ± 0% +11.48% (p=0.000 n=10+8)
1K 312MB/s ± 0% 357MB/s ± 0% +14.41% (p=0.000 n=10+10)
64Unaligned 246MB/s ± 0% 274MB/s ± 0% +11.43% (p=0.000 n=10+10)
1KUnaligned 312MB/s ± 0% 357MB/s ± 0% +14.39% (p=0.000 n=10+8)
Updates #17895.
Change-Id: Ia771d275bb9150d1a598f8cc773444663de5ce16
Reviewed-on: https://go-review.googlesource.com/36963
Run-TryBot: Michael Munday <munday@ca.ibm.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Currently the conversion from constant divides to multiplies is mostly
done during the walk pass. This is suboptimal because SSA can
determine that the value being divided by is constant more often
(e.g. after inlining).
Change-Id: If1a9b993edd71be37396b9167f77da271966f85f
Reviewed-on: https://go-review.googlesource.com/37015
Run-TryBot: Keith Randall <khr@golang.org>
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
Use (-x)>>63 instead of ((x-1)>>63)^-1 to get a mask that
is 0 when x is 0 and all ones when x is positive.
Saves one instruction when slicing.
Change-Id: Ib46d53d3aac6530ac481fa2f265a6eadf3df0567
Reviewed-on: https://go-review.googlesource.com/35641
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>