It could only handle one finalizer before it raised an out-of-bounds error.
Fixes issue #9172
Change-Id: Ibb4d0c8aff2d78a1396e248c7129a631176ab427
Reviewed-on: https://go-review.googlesource.com/1201
Reviewed-by: Russ Cox <rsc@golang.org>
needm used to print an error before exiting when it was called too
early, but this error was lost in the transition to Go. Bring back
the error so we don't silently exit(1) when this happens.
Change-Id: I8086932783fd29a337d7dea31b9d6facb64cb5c1
Reviewed-on: https://go-review.googlesource.com/1226
Reviewed-by: Russ Cox <rsc@golang.org>
Avoids a potential O(n^2) performance problem when dequeueing
from very popular channels.
benchmark old ns/op new ns/op delta
BenchmarkChanPopular 2563782 627201 -75.54%
Change-Id: I231aaeafea0ecd93d27b268a0b2128530df3ddd6
Reviewed-on: https://go-review.googlesource.com/1200
Reviewed-by: Russ Cox <rsc@golang.org>
If the symbol table isn't sorted, we print it and abort. However, we
were missing the line break after each symbol, resulting in one
gigantic line instead of a nicely formatted table.
Change-Id: Ie5c6f3c256d0e648277cb3db4496512a79d266dd
Reviewed-on: https://go-review.googlesource.com/1182
Reviewed-by: Russ Cox <rsc@golang.org>
When we start work on Gerrit, ppc64 and garbage collection
work will continue in the master branch, not the dev branches.
(We may still use dev branches for other things later, but
these are ready to be merged, and doing it now, before moving
to Git means we don't have to have dev branches working
in the Gerrit workflow on day one.)
TBR=rlh
CC=golang-codereviews
https://golang.org/cl/183140043
640 bytes ought to be enough for anybody.
We'll bring this back down before Go 1.5. That's issue 9214.
TBR=rlh
CC=golang-codereviews
https://golang.org/cl/188730043
This is going to hurt a bit but we'll make it better later.
Now the race detector can be run again.
I added the write barrier optimizations from
CL 183020043 to try to make it hurt a little less.
TBR=rlh
CC=golang-codereviews
https://golang.org/cl/185070043
This is the last system-dependent file written by cmd/dist.
They are all now written by go generate.
cmd/dist is not needed to start building package runtime
for a different system anymore.
Now all the generated files can be assumed generated, so
delete the clumsy hacks in cmd/api.
Re-enable api check in run.bash.
LGTM=bradfitz
R=bradfitz
CC=golang-codereviews
https://golang.org/cl/185040044
During garbage collection, after scanning a stack, we think about
shrinking it to reclaim some memory. The shrinking code (called
while the world is stopped) checked that the status was Gwaiting
or Grunnable and then changed the state to Gcopystack, to essentially
lock the stack so that no other GC thread is scanning it.
The same locking happens for stack growth (and is more necessary there).
oldstatus = runtime·readgstatus(gp);
oldstatus &= ~Gscan;
if(oldstatus == Gwaiting || oldstatus == Grunnable)
runtime·casgstatus(gp, oldstatus, Gcopystack); // oldstatus is Gwaiting or Grunnable
else
runtime·throw("copystack: bad status, not Gwaiting or Grunnable");
Unfortunately, "stop the world" doesn't stop everything. It stops all
normal goroutine execution, but the network polling thread is still
blocked in epoll and may wake up. If it does, and it chooses a goroutine
to mark runnable, and that goroutine is the one whose stack is shrinking,
then it can happen that between readgstatus and casgstatus, the status
changes from Gwaiting to Grunnable.
casgstatus assumes that if the status is not what is expected, it is a
transient change (like from Gwaiting to Gscanwaiting and back, or like
from Gwaiting to Gcopystack and back), and it loops until the status
has been restored to the expected value. In this case, the status has
changed semi-permanently from Gwaiting to Grunnable - it won't
change again until the GC is done and the world can continue, but the
GC is waiting for the status to change back. This wedges the program.
To fix, call a special variant of casgstatus that accepts either Gwaiting
or Grunnable as valid statuses.
Without the fix bug with the extra check+throw in casgstatus, the
program below dies in a few seconds (2-10) with GOMAXPROCS=8
on a 2012 Retina MacBook Pro. With the fix, it runs for minutes
and minutes.
package main
import (
"io"
"log"
"net"
"runtime"
)
func main() {
const N = 100
for i := 0; i < N; i++ {
l, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
log.Fatal(err)
}
ch := make(chan net.Conn, 1)
go func() {
var err error
c1, err := net.Dial("tcp", l.Addr().String())
if err != nil {
log.Fatal(err)
}
ch <- c1
}()
c2, err := l.Accept()
if err != nil {
log.Fatal(err)
}
c1 := <-ch
l.Close()
go netguy(c1, c2)
go netguy(c2, c1)
c1.Write(make([]byte, 100))
}
for {
runtime.GC()
}
}
func netguy(r, w net.Conn) {
buf := make([]byte, 100)
for {
bigstack(1000)
_, err := io.ReadFull(r, buf)
if err != nil {
log.Fatal(err)
}
w.Write(buf)
}
}
var g int
func bigstack(n int) {
var buf [100]byte
if n > 0 {
bigstack(n - 1)
}
g = int(buf[0]) + int(buf[99])
}
Fixes#9186.
LGTM=rlh
R=austin, rlh
CC=dvyukov, golang-codereviews, iant, khr, r
https://golang.org/cl/179680043
Otherwise both zgoos_linux.go and zgoos_android.go will be compiled
for GOOS=android.
LGTM=crawshaw, rsc
R=rsc, crawshaw
CC=golang-codereviews
https://golang.org/cl/178110043
We don't know what we need yet, so add them all.
Add them even on x86 architectures (as no-ops) so that
the GC can refer to them unconditionally.
Eventually we'll know what we want and probably
have just one 'prefetch' with an appropriate meaning
on each architecture.
LGTM=rlh
R=rlh
CC=golang-codereviews
https://golang.org/cl/179160043
Thanks to Aram Hăvărneanu, Nick Owens
and Russ Cox for the early reviews.
LGTM=aram, rsc
R=rsc, lucio.dere, aram, ality
CC=golang-codereviews, mischief
https://golang.org/cl/175370043
Race detector runtime does not tolerate operations on addresses
that was not previously declared with __tsan_map_shadow
(namely, data, bss and heap). The corresponding address
checks for atomic operations were removed in
https://golang.org/cl/111310044
Restore these checks.
It's tricker than just not calling into race runtime,
because it is the race runtime that makes the atomic
operations themselves (if we do not call into race runtime
we skip the atomic operation itself as well). So instead we call
__tsan_go_ignore_sync_start/end around the atomic operation.
This forces race runtime to skip all other processing
except than doing the atomic operation itself.
Fixes#9136.
LGTM=rsc
R=rsc
CC=golang-codereviews
https://golang.org/cl/179030043
The assumption can be violated by external linkers reordering them or
inserting non-Go sections in between them. I looked briefly at trying
to write out the _go_.o in external linking mode in a way that forced
the ordering, but no matter what there's no way to force Go's data
and Go's bss to be next to each other. If there is any data or bss from
non-Go objects, it's very likely to get stuck in between them.
Instead, rewrite the two places we know about that make the assumption.
I grepped for noptrdata to look for more and didn't find any.
The added race test (os/exec in external linking mode) fails without
the changes in the runtime. It crashes with an invalid pointer dereference.
Fixes#9133.
LGTM=dneil
R=dneil
CC=dvyukov, golang-codereviews, iant
https://golang.org/cl/179980043
struct siginfo_t's si_addr field is part of a union.
Previously, we represented this union in Go using an opaque
byte array and accessed the si_addr field using unsafe (and
wrong on 386 and arm!) pointer arithmetic. Since si_addr is
the only field we use from this union, this replaces the
opaque byte array with an explicit declaration of the si_addr
field and accesses it directly.
LGTM=minux, rsc
R=rsc, minux
CC=golang-codereviews
https://golang.org/cl/179970044
Previously, this used the top 8 bits of an instruction as a
sort-of opcode and ignored the top two bits of the relative
PC. This worked because these jumps are always negative and
never big enough for the top two bits of the relative PC (also
the bottom 2 bits of the sort-of opcode) to be anything other
than 0b11, but the code is confusing because it doesn't match
the actual structure of the instruction.
Instead, use the real 6 bit opcode and use all 24 bits of
relative PC.
LGTM=rsc
R=rsc, dave
CC=golang-codereviews
https://golang.org/cl/179960043
Previously, lfstack assumed Linux limited user space addresses
to 43 bits on Power64 based on a paper from 2001. It turns
out the limit is now 46 bits, so lfstack was truncating
pointers.
Raise the limit to 48 bits (for some future proofing and to
make it match amd64) and add a self-test that will fail in a
useful way if ever unpack(pack(x)) != x.
With this change, dev.cc passes all.bash on power64le.
LGTM=rsc
R=rsc
CC=golang-codereviews
https://golang.org/cl/174430043
This is the power64 component of CL 174950043.
With this, dev.cc compiles on power64 and power64le and passes
most tests if GOGC=off (but crashes in go_bootstrap if GC is
on).
LGTM=rsc
R=rsc
CC=golang-codereviews
https://golang.org/cl/175290043
Fix a constant conversion error. Add set_{sec,nsec} for
timespec and set_usec for timeval. Fix type of
sigaltstackt.ss_size.
LGTM=rsc
R=rsc, bradfitz
CC=golang-codereviews
https://golang.org/cl/180840043
Eventually I'd like almost everything cmd/dist generates
to be done with 'go generate' and checked in, to simplify
the bootstrap process. The only thing cmd/dist really needs
to do is write things like the current experiment info and
the current version.
This is a first step toward that. It replaces the _NaCl etc
constants with generated ones goos_nacl, goos_darwin,
goarch_386, and so on.
LGTM=dave, austin
R=austin, dave, bradfitz
CC=golang-codereviews, iant, r
https://golang.org/cl/174290043
The SudoG used to sit on the stack, so it was cheap to allocated
and didn't need to be cleaned up when finished.
For the conversion to Go, we had to move sudog off the stack
for a few reasons, so we added a cache of recently used sudogs
to keep allocation cheap. But we didn't add any of the necessary
cleanup before adding a SudoG to the new cache, and so the cached
SudoGs had stale pointers inside them that have caused all sorts
of awful, hard to debug problems.
CL 155760043 made sure SudoG.elem is cleaned up.
CL 150520043 made sure SudoG.selectdone is cleaned up.
This CL makes sure SudoG.next, SudoG.prev, and SudoG.waitlink
are cleaned up. I should have done this when I did the other two
fields; instead I wasted a week tracking down a leak they caused.
A dangling SudoG.waitlink can point into a sudogcache list that
has been "forgotten" in order to let the GC collect it, but that
dangling .waitlink keeps the list from being collected.
And then the list holding the SudoG with the dangling waitlink
can find itself in the same situation, and so on. We end up
with lists of lists of unusable SudoGs that are still linked into
the object graph and never collected (given the right mix of
non-trivial selects and non-channel synchronization).
More details in golang.org/issue/9110.
Fixes#9110.
LGTM=r
R=r
CC=dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/177870043
I just created that redirect, so we can change
it once the wiki moves.
LGTM=bradfitz, khr
R=khr, bradfitz
CC=golang-codereviews
https://golang.org/cl/177780043
The garbage collector is now written in Go.
There is plenty to clean up (just like on dev.cc).
all.bash passes on darwin/amd64, darwin/386, linux/amd64, linux/386.
TBR=rlh
R=austin, rlh, bradfitz
CC=golang-codereviews
https://golang.org/cl/173250043