Commit Graph

9 Commits

Author SHA1 Message Date
Austin Clements 5250279eb9 runtime: detect and print corrupted free lists
Issues #10240, #10541, #10941, #11023, #11027 and possibly others are
indicating memory corruption in the runtime. One of the easiest places
to both get corruption and detect it is in the allocator's free lists
since they appear throughout memory and follow strict invariants. This
commit adds a check when sweeping a span that its free list is sane
and, if not, it prints the corrupted free list and panics. Hopefully
this will help us collect more information on these failures.

Change-Id: I6d417bcaeedf654943a5e068bd76b58bb02d4a64
Reviewed-on: https://go-review.googlesource.com/10713
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
2015-06-16 21:17:47 +00:00
Austin Clements 24a7252e25 runtime: finish sweeping before concurrent GC starts
Currently, the concurrent sweep follows a 1:1 rule: when allocation
needs a span, it sweeps a span (likewise, when a large allocation
needs N pages, it sweeps until it frees N pages). This rule worked
well for the STW collector (especially when GOGC==100) because it did
no more sweeping than necessary to keep the heap from growing, would
generally finish sweeping just before GC, and ensured good temporal
locality between sweeping a page and allocating from it.

It doesn't work well with concurrent GC. Since concurrent GC requires
starting GC earlier (sometimes much earlier), the sweep often won't be
done when GC starts. Unfortunately, the first thing GC has to do is
finish the sweep. In the mean time, the mutator can continue
allocating, pushing the heap size even closer to the goal size. This
worked okay with the 7/8ths trigger, but it gets into a vicious cycle
with the GC trigger controller: if the mutator is allocating quickly
and driving the trigger lower, more and more sweep work will be left
to GC; this both causes GC to take longer (allowing the mutator to
allocate more during GC) and delays the start of the concurrent mark
phase, which throws off the GC controller's statistics and generally
causes it to push the trigger even lower.

As an example of a particularly bad case, the garbage benchmark with
GOMAXPROCS=4 and -benchmem 512 (MB) spends the first 0.4-0.8 seconds
of each GC cycle sweeping, during which the heap grows by between
109MB and 252MB.

To fix this, this change replaces the 1:1 sweep rule with a
proportional sweep rule. At the end of GC, GC knows exactly how much
heap allocation will occur before the next concurrent GC as well as
how many span pages must be swept. This change computes this "sweep
ratio" and when the mallocgc asks for a span, the mcentral sweeps
enough spans to bring the swept span count into ratio with the
allocated byte count.

On the benchmark from above, this entirely eliminates sweeping at the
beginning of GC, which reduces the time between startGC readying the
GC goroutine and GC stopping the world for sweep termination to ~100µs
during which the heap grows at most 134KB.

Change-Id: I35422d6bba0c2310d48bb1f8f30a72d29e98c1af
Reviewed-on: https://go-review.googlesource.com/8921
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-04-21 15:35:46 +00:00
Austin Clements bedb6f8aef runtime: remove unnecessary traceNextGC
Commit d7e0ad4 removed the next_gc manipulation from mSpan_Sweep, but
left in the traceNextGC() for recording the updated next_gc
value. Remove this now unnecessary call.

Change-Id: I28e0de071661199be9810d7bdcc81ce50b5a58ae
Reviewed-on: https://go-review.googlesource.com/8894
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-04-14 20:54:23 +00:00
Austin Clements d7e0ad4b82 runtime: introduce heap_live; replace use of heap_alloc in GC
Currently there are two main consumers of memstats.heap_alloc:
updatememstats (aka ReadMemStats) and shouldtriggergc.

updatememstats recomputes heap_alloc from the ground up, so we don't
need to keep heap_alloc up to date for it. shouldtriggergc wants to
know how many bytes were marked by the previous GC plus how many bytes
have been allocated since then, but this *isn't* what heap_alloc
tracks. heap_alloc also includes objects that are not marked and
haven't yet been swept.

Introduce a new memstat called heap_live that actually tracks what
shouldtriggergc wants to know and stop keeping heap_alloc up to date.

Unlike heap_alloc, heap_live follows a simple sawtooth that drops
during each mark termination and increases monotonically between GCs.
heap_alloc, on the other hand, has much more complicated behavior: it
may drop during sweep termination, slowly decreases from background
sweeping between GCs, is roughly unaffected by allocation as long as
there are unswept spans (because we sweep and allocate at the same
rate), and may go up after background sweeping is done depending on
the GC trigger.

heap_live simplifies computing next_gc and using it to figure out when
to trigger garbage collection. Currently, we guess next_gc at the end
of a cycle and update it as we sweep and get a better idea of how much
heap was marked. Now, since we're directly tracking how much heap is
marked, we can directly compute next_gc.

This also corrects bugs that could cause us to trigger GC early.
Currently, in any case where sweep termination actually finds spans to
sweep, heap_alloc is an overestimation of live heap, so we'll trigger
GC too early. heap_live, on the other hand, is unaffected by sweeping.

Change-Id: I1f96807b6ed60d4156e8173a8e68745ffc742388
Reviewed-on: https://go-review.googlesource.com/8389
Reviewed-by: Russ Cox <rsc@golang.org>
2015-04-06 21:28:13 +00:00
Dmitry Vyukov 919fd24884 runtime: remove runtime frames from stacks in traces
Stip uninteresting bottom and top frames from trace stacks.
This makes both binary and json trace files smaller,
and also makes stacks shorter and more readable in the viewer.

Change-Id: Ib9c80ccc280504f0e235f867f53f1d2652c41583
Reviewed-on: https://go-review.googlesource.com/5523
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
2015-03-10 14:46:15 +00:00
Russ Cox 5789b28525 runtime: start GC background sweep eagerly
Starting it lazily causes a memory allocation (for the goroutine) during GC.

First use of channels for runtime implementation.

Change-Id: I9cd24dcadbbf0ee5070ee6d0ed7ea415504f316c
Reviewed-on: https://go-review.googlesource.com/6960
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
2015-03-05 21:41:55 +00:00
Rick Hudson 122384e489 runtime: Remove boundary bit logic.
This is an experiment to see if removing the boundary bit logic will
lead to fewer cache misses and improved performance. Instead of using
boundary bits we use the span information to get element size and use
some bit whacking to get the boundary without having to touch the
random heap bits which cause cache misses.

Furthermore once the boundary bit is removed we can either use that
bit for a simpler checkmark routine or we can reduce the number of
bits in the GC bitmap to 2 bits per pointer sized work. For example
the 2 bits at the boundary can be used for marking and pointer/scalar
differentiation. Since we don't need the mark bit except at the
boundary nibble of the object other nibbles can use this bit
as a noscan bit to indicate that there are no more pointers in
the object.

Currently the changed included in this CL slows down the garbage
benchmark. With the boundary bits garbage gives 5.78 and without
(this CL) it gives 5.88 which is a 2% slowdown.

Change-Id: Id68f831ad668176f7dc9f7b57b339e4ebb6dc4c2
Reviewed-on: https://go-review.googlesource.com/6665
Reviewed-by: Austin Clements <austin@google.com>
2015-03-04 20:55:55 +00:00
Russ Cox 89a091de24 runtime: split gc_m into gcMark and gcSweep
This is a nice split but more importantly it provides a better
way to fit the checkmark phase into the sequencing.

Also factor out common span copying into gcSpanCopy.

Change-Id: Ia058644974e4ed4ac3cf4b017a3446eb2284d053
Reviewed-on: https://go-review.googlesource.com/5333
Reviewed-by: Austin Clements <austin@google.com>
2015-02-20 17:00:39 +00:00
Russ Cox 484f801ff4 runtime: reorganize memory code
Move code from malloc1.go, malloc2.go, mem.go, mgc0.go into
appropriate locations.

Factor mgc.go into mgc.go, mgcmark.go, mgcsweep.go, mstats.go.

A lot of this code was in certain files because the right place was in
a C file but it was written in Go, or vice versa. This is one step toward
making things actually well-organized again.

Change-Id: I6741deb88a7cfb1c17ffe0bcca3989e10207968f
Reviewed-on: https://go-review.googlesource.com/5300
Reviewed-by: Austin Clements <austin@google.com>
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-02-19 20:17:01 +00:00